Non-exponential magnetic relaxation in magnetic nanoparticles for hyperthermia

被引:7
|
作者
Gresits, I [1 ,2 ]
Thuroczy, Gy [1 ]
Sagi, O. [2 ]
Kollarics, S. [2 ]
Csosz, G. [2 ]
Markus, B. G. [2 ,6 ]
Nemes, N. M. [3 ,4 ]
Garcia Hernandez, M. [4 ]
Simon, F. [2 ,5 ]
机构
[1] Natl Publ Hlth Ctr, Dept Nonionizing Radiat, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Phys, POB 91, H-1521 Budapest, Hungary
[3] Univ Complutense Madrid, Dept Fis Mat, Lab Heteroestruct Con Aplicac Espintron, GFMC,Unidad Asociada ICMM CSIC, Madrid 28040, Spain
[4] Inst Ciencia Mat Madrid, Madrid 28049, Spain
[5] Ecole Polytech Fed Lausanne, Lab Phys Complex Matter, CH-1015 Lausanne, Switzerland
[6] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, Budapest, Hungary
关键词
Complex magnetic susceptibility - Discrete frequencies - Dynamic magnetic susceptibility - Frequency dependent - Irradiation conditions - Optimal measurements - Radiofrequency resonators - Relaxation parameter;
D O I
10.1016/j.jmmm.2020.167682
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic nanoparticle based hyperthermia emerged as a potential tool for treating malignant tumours. The efficiency of the method relies heavily on the knowledge of magnetic properties of the samples; in particular, knowledge of the frequency dependent complex magnetic susceptibility is vital to optimize the irradiation conditions and to provide feedback for material science developments. We study the frequency-dependent magnetic susceptibility of an aqueous ferrite suspension for the first time using non-resonant and resonant radiofrequency reflectometry. We identify the optimal measurement conditions using a standard solenoid coil, which is capable of providing the complex magnetic susceptibility up to 150 MHz. The result matches those obtained from a radiofrequency resonator for a few discrete frequencies. The agreement between the two different methods validates our approach. Surprisingly, the dynamic magnetic susceptibility cannot be explained by an exponential magnetic relaxation behavior even when we consider a particle size-dependent distribution of the relaxation parameter.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia
    Obaidat, Ihab M.
    Issa, Bashar
    Haik, Yousef
    NANOMATERIALS, 2015, 5 (01) : 63 - 89
  • [32] Magnetic hyperthermia with hard-magnetic nanoparticles
    Kashevsky, Bronislav E.
    Kashevsky, Sergey B.
    Korenkov, Victor S.
    Istomin, Yuri P.
    Terpinskaya, Tatyana I.
    Ulashchik, Vladimir S.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 380 : 335 - 340
  • [33] Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia
    Lanier, Olivia L.
    Korotych, Olena, I
    Monsalve, Adam G.
    Wable, Dayita
    Savliwala, Shehaab
    Grooms, Noa W. F.
    Nacea, Christopher
    Tuitt, Omani R.
    Dobson, Jon
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2019, 36 (01) : 687 - 701
  • [34] Mechanisms of hyperthermia in magnetic nanoparticles
    Vallejo-Fernandez, G.
    Whear, O.
    Roca, A. G.
    Hussain, S.
    Timmis, J.
    Patel, V.
    O'Grady, K.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (31)
  • [35] MAGNETIC NANOPARTICLES FOR HYPERTHERMIA APPLICATIONS
    Darwish, Mohamed
    Stibor, Ivan
    NANOCON 2014, 6TH INTERNATIONAL CONFERENCE, 2015, : 525 - 529
  • [36] Field- and concentration-dependent relaxation of magnetic nanoparticles and optimality conditions for magnetic fluid hyperthermia
    Ilg, Patrick
    Kroger, Martin
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] Field- and concentration-dependent relaxation of magnetic nanoparticles and optimality conditions for magnetic fluid hyperthermia
    Patrick Ilg
    Martin Kröger
    Scientific Reports, 13
  • [38] Multidimensional NMR experiments to observe the nature of non-exponential relaxation in glasses
    A. Heuer
    S. C. Kuebler
    U. Tracht
    H. W. Spiess
    Applied Magnetic Resonance, 1997, 12 : 183 - 191
  • [39] Photophysical Model for Non-Exponential Relaxation Dynamics in Hybrid Perovskite Semiconductors
    Saxena, Rishabh
    Kumar, Ayush
    Jain, Nakul
    Kumawat, Naresh K.
    Narasimhan, K. L.
    Kabra, Dinesh
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (02): : 1119 - 1124
  • [40] The relationship between the scaling parameter and relaxation time for non-exponential relaxation in disordered systems
    Ryabov, YE
    Feldman, Y
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2003, 11 : 173 - 183