Non-exponential magnetic relaxation in magnetic nanoparticles for hyperthermia

被引:7
|
作者
Gresits, I [1 ,2 ]
Thuroczy, Gy [1 ]
Sagi, O. [2 ]
Kollarics, S. [2 ]
Csosz, G. [2 ]
Markus, B. G. [2 ,6 ]
Nemes, N. M. [3 ,4 ]
Garcia Hernandez, M. [4 ]
Simon, F. [2 ,5 ]
机构
[1] Natl Publ Hlth Ctr, Dept Nonionizing Radiat, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Phys, POB 91, H-1521 Budapest, Hungary
[3] Univ Complutense Madrid, Dept Fis Mat, Lab Heteroestruct Con Aplicac Espintron, GFMC,Unidad Asociada ICMM CSIC, Madrid 28040, Spain
[4] Inst Ciencia Mat Madrid, Madrid 28049, Spain
[5] Ecole Polytech Fed Lausanne, Lab Phys Complex Matter, CH-1015 Lausanne, Switzerland
[6] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, Budapest, Hungary
关键词
Complex magnetic susceptibility - Discrete frequencies - Dynamic magnetic susceptibility - Frequency dependent - Irradiation conditions - Optimal measurements - Radiofrequency resonators - Relaxation parameter;
D O I
10.1016/j.jmmm.2020.167682
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic nanoparticle based hyperthermia emerged as a potential tool for treating malignant tumours. The efficiency of the method relies heavily on the knowledge of magnetic properties of the samples; in particular, knowledge of the frequency dependent complex magnetic susceptibility is vital to optimize the irradiation conditions and to provide feedback for material science developments. We study the frequency-dependent magnetic susceptibility of an aqueous ferrite suspension for the first time using non-resonant and resonant radiofrequency reflectometry. We identify the optimal measurement conditions using a standard solenoid coil, which is capable of providing the complex magnetic susceptibility up to 150 MHz. The result matches those obtained from a radiofrequency resonator for a few discrete frequencies. The agreement between the two different methods validates our approach. Surprisingly, the dynamic magnetic susceptibility cannot be explained by an exponential magnetic relaxation behavior even when we consider a particle size-dependent distribution of the relaxation parameter.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Non-Exponential Relaxation of Magnetic Nanoparticles in Aqueous Magnetic Nanofluid
    Patel, Rajesh
    JOURNAL OF NANOFLUIDS, 2012, 1 (01) : 71 - 77
  • [2] ANISOTROPIC REORIENTATION AND NON-EXPONENTIAL NUCLEAR MAGNETIC-RELAXATION
    WERBELOW, LG
    MARSHALL, AG
    MOLECULAR PHYSICS, 1974, 28 (01) : 113 - 129
  • [3] Non-Exponential Relaxation in a Resonant Quantum Tunneling System of Magnetic Molecules
    T. Ohm
    C. Sangregorio
    C. Paulsen
    Journal of Low Temperature Physics, 1998, 113 : 1141 - 1146
  • [4] Non-exponential relaxation in a resonant quantum tunneling system of magnetic molecules
    Ohm, T
    Sangregorio, C
    Paulsen, C
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1998, 113 (5-6) : 1141 - 1146
  • [5] Non-exponential relaxation models of signal decay in magnetic resonance imaging
    Wang, Shuhong
    Liang, Yingjie
    Magin, Richard L.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [6] Magnetic relaxation of intracellular magnetic nanoparticles for hyperthermia
    Tomitaka A.
    Takemura Y.
    Critical Reviews in Biomedical Engineering, 2019, 47 (06) : 489 - 494
  • [7] Universality of non-exponential relaxation
    Chao, W
    Jin, KJ
    CHINESE PHYSICS LETTERS, 1995, 12 (10) : 633 - 636
  • [8] NON-EXPONENTIAL RELAXATION IN LIQUIDS AND GLASSES
    SKINNER, JL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1983, 185 (MAR): : 51 - PHYS
  • [9] Non-exponential relaxation for anomalous diffusion
    Vainstein, MH
    Costa, IVL
    Morgado, R
    Oliveira, FA
    EUROPHYSICS LETTERS, 2006, 73 (05): : 726 - 732
  • [10] Non-exponential relaxation in dilute antiferromagnets
    Staats, M
    Nowak, U
    Usadel, KD
    PHASE TRANSITIONS, 1998, 65 (1-4) : 159 - 167