Toral algebraic sets and function theory on polydisks

被引:39
作者
Agler, Jim [1 ]
McCarthy, John E.
Stankus, Mark
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Washington Univ, St Louis, MO 63130 USA
[3] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA
基金
美国国家科学基金会;
关键词
toral variety; inner function; H-infinity; Pick interpolation;
D O I
10.1007/BF02922130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A toral algebraic set A is an algebraic set in C-n whose intersection with T-n is sufficiently large to determine the holomorphic functions on A. We develop the theory of these sets, and give a number of applications to function theory in several variables and operator theoretic model theory. In particular, we show that the uniqueness set for an extremal Pick problem on the bidisk is a toral algebraic set, that rational inner functions have zero sets whose irreducible components are not toral, and that the model theory for a commuting pair of contractions with finite defect lives naturally on a toral algebraic set.
引用
收藏
页码:551 / 562
页数:12
相关论文
共 13 条
[1]  
Agler J, 1999, J REINE ANGEW MATH, V506, P191
[2]  
AGLER J, 2005, ACTA MATH, V94, P133
[3]  
Ando T., 1963, ACTA SCI MATH, V24, P88
[4]  
[Anonymous], 1970, HARMONIC ANAL OPERAT
[5]  
Ball JA, 2004, INT J CONTROL, V77, P802, DOI [10.1080/0020717041001726831, 10.1080/002071700410001726831]
[6]  
Ball JA, 2003, IMA VOL MATH APPL, V134, P63
[7]  
Ball JA, 2001, OPER THEOR, V129, P37
[8]   Unitary colligations, reproducing Kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables [J].
Ball, JA ;
Trent, TT .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 157 (01) :1-61
[9]  
Cole BJ, 1999, INDIANA U MATH J, V48, P767
[10]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA