m-cluster tilted algebras of type (A)over-tilde

被引:4
作者
Gubitosi, Viviana [1 ]
机构
[1] Inst Matemat & Estadist Rafael Laguardia, Fac Ingn UdelaR, Montevideo 11200, Uruguay
关键词
m-cluster tilted algebras; gentle algebras; EQUIVALENCE CLASSIFICATION; BISERIAL ALGEBRAS; GENTLE ALGEBRAS; CATEGORIES; A(N); COMBINATORICS; COMPLEXES;
D O I
10.1080/00927872.2018.1424861
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize all the finite dimensional algebras that are m-cluster tilted algebras of type. We show that these algebras are gentle and we give an explicit description of their quivers with relations.
引用
收藏
页码:3563 / 3590
页数:28
相关论文
共 23 条
  • [1] GENERALIZED TILTED ALGEBRAS OF TYPE AN
    ASSEM, I
    HAPPEL, D
    [J]. COMMUNICATIONS IN ALGEBRA, 1981, 9 (20) : 2101 - 2125
  • [2] ITERATED TILTED ALGEBRAS OF TYPE AN
    ASSEM, I
    SKOWRONSKI, A
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (02) : 269 - 290
  • [3] Assem I., 2006, LOND MATH SOC STUD T, V1, P65, DOI DOI 10.1017/CB09780511614309
  • [4] Gentle algebras arising from surface triangulations
    Assem, Ibrahim
    Brustle, Thomas
    Charbonneau-Jodoin, Gabrielle
    Plamondon, Pierre-Guy
    [J]. ALGEBRA & NUMBER THEORY, 2010, 4 (02) : 201 - 229
  • [5] Auslander M., 1995, REPRESENTATION THEOR, V36
  • [6] Combinatorial derived invariants for gentle algebras
    Avella-Alaminos, Diana
    Geiss, Christof
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) : 228 - 243
  • [7] A geometric description of m-cluster categories
    Baur, Karin
    Marsh, Robert J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) : 5789 - 5803
  • [8] THE ALGEBRAS DERIVED EQUIVALENT TO GENTLE CLUSTER TILTED ALGEBRAS
    Bobinski, Grzegorz
    Buan, Aslak Bakke
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (01)
  • [9] Derived equivalence classification for cluster-tilted algebras of type An
    Buan, Aslak Bakke
    Vatne, Dagfinn F.
    [J]. JOURNAL OF ALGEBRA, 2008, 319 (07) : 2723 - 2738
  • [10] Buan AB, 2007, T AM MATH SOC, V359, P323