Highly conductive Co3Se4 embedded in N-doped 3D interconnected carbonaceous network for enhanced lithium and sodium storage

被引:32
作者
Liu, Bingke [1 ]
Cao, Junming [1 ]
Li, Junzhi [1 ]
Li, La [4 ]
Chen, Duo [1 ]
Zhang, Siqi [3 ]
Cai, Dong [5 ]
Han, Wei [1 ,2 ]
机构
[1] Jilin Univ, Coll Phys, Sino Russian Int Joint Lab Clean Energy & Energy, Changchun 130012, Peoples R China
[2] Jilin Univ, Int Ctr Future Sci, Changchun 130012, Peoples R China
[3] Jilin Univ, Coll Phys, Key Lab Phys & Technol Adv Batteries, Minist Educ, Changchun 130012, Peoples R China
[4] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[5] Wenzhou Univ, Key Lab Carbon Mat Zhejiang Prov, Wenzhou 325035, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Sodium-ion batteries; Co3Se4; 3D interconnected carbon network; Nitrogen-doped; In-situ generated selenium; Rising capacity; ANODE MATERIALS; SUPERIOR LITHIUM; ION; TEMPLATE; NANOSHEETS; CATHODE; LIFE; SUPERCAPACITOR; MICROSPHERES; COMPOSITES;
D O I
10.1016/j.jcis.2020.10.131
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Traditional cobalt selenides as active materials in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBS) would suffer from drastic volume expansions and large stacking effects, leading to a low cycling stability. In this work, we utilized a facile template method for preparing Co3Se4@N-CN (CSNC) that encapsulated Co3Se4 nanoparticles into 3D interconnected nitrogen-doped carbon network (N-CN). Satisfactorily, it possesses excellent cycling stability with enhanced lithium and sodium energy storage capacity. As an anode material in LIBs, CSNC exhibited a prominent reversible discharge performance of 1313.5 mAh g(-1) after 100 cycles at 0.1 A g(-1) and 835.6 mAh g(-1) after 500 cycles at 1.0 A g(-1). Interestingly, according to the analysis from cyclic voltammetry, the in-situ generated Se might provide extra capacity that leaded to a rising trend of capacity. When utilized as an anode in SIBS, CSNC delivered an outstanding capacity of 448.7 mAh g(-1) after 100 cycles at 0.1 A g(-1) and could retain 328.9 mAh g(-1) (77.2% of that of 0.1 A g(-1)) even at a high current density of 5.0 A g(-1). The results demonstrate that CSNC is a superior anode material in LIBs and SIBS with great promise. More importantly, this strategy opens up an effective avenue for the design of transition metal selenide/carbonaceous composites for advanced battery storage systems. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:630 / 639
页数:10
相关论文
共 46 条
[21]   Selenium@Mesoporous Carbon Composite with Superior Lithium and Sodium Storage Capacity [J].
Luo, Chao ;
Xu, Yunhua ;
Zhu, Yujie ;
Liu, Yihang ;
Zheng, Shiyou ;
Liu, Ying ;
Langrock, Alex ;
Wang, Chunsheng .
ACS NANO, 2013, 7 (09) :8003-8010
[22]   MoSe2-Covered N,P-Doped Carbon Nanosheets as a Long-Life and High-Rate Anode Material for Sodium-Ion Batteries [J].
Niu, Feier ;
Yang, Jing ;
Wang, Nana ;
Zhang, Dapeng ;
Fan, Weiliu ;
Yang, Jian ;
Qian, Yitai .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (23)
[23]   Studying disorder in graphite-based systems by Raman spectroscopy [J].
Pimenta, M. A. ;
Dresselhaus, G. ;
Dresselhaus, M. S. ;
Cancado, L. G. ;
Jorio, A. ;
Saito, R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (11) :1276-1291
[24]   NaCl-template-assisted freeze-drying synthesis of 3D porous carbon-encapsulated V2O3 for lithium-ion battery anode [J].
Ren, Xiaolong ;
Ai, Desheng ;
Zhan, Changzhen ;
Lv, Ruitao ;
Kang, Feiyu ;
Huang, Zheng-Hong .
ELECTROCHIMICA ACTA, 2019, 318 :730-736
[25]   Encapsulating Trogtalite CoSe2 Nanobuds into BCN Nanotubes as High Storage Capacity Sodium Ion Battery Anodes [J].
Tabassum, Hassina ;
Zhi, Chenxu ;
Hussain, Tanveer ;
Qiu, Tianjie ;
Aftab, Waseem ;
Zou, Ruqiang .
ADVANCED ENERGY MATERIALS, 2019, 9 (39)
[26]   Tailoring the physicochemical properties of chitosan-derived N-doped carbon by controlling hydrothermal carbonization time for high-performance supercapacitor applicationle [J].
Tong, Xing ;
Chen, Zehong ;
Zhuo, Hao ;
Hu, Yijie ;
Jing, Shuangshuang ;
Liu, Jinchao ;
Zhong, Linxin .
CARBOHYDRATE POLYMERS, 2019, 207 (764-774) :764-774
[27]   Selenium-sulfur (SeS) fast charging cathode for sodium and lithium metal batteries [J].
Viet Hung Pham ;
Boscoboinik, Anibal ;
Stacchiola, Dario J. ;
Self, Ethan C. ;
Manikandan, Palanisamy ;
Nagarajan, Sudhan ;
Wang, Yixian ;
Pol, Vilas G. ;
Nanda, Jagjit ;
Paek, Eunsu ;
Mitlin, David .
ENERGY STORAGE MATERIALS, 2019, 20 :71-79
[28]   In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries [J].
Wang, Dan ;
Wang, Zhiyuan ;
Li, Yuan ;
Dong, Kangze ;
Shao, Jiahui ;
Luo, Shaohua ;
Liu, Yanguo ;
Qi, Xiwei .
APPLIED SURFACE SCIENCE, 2019, 464 :422-428
[29]   Diethylenetriamine directed the assembly of Co0.85Se nanosheets layer by layer on N-doped carbon nanosheets for high performance lithium ion batteries [J].
Wang, Guangming ;
Yue, Hailong ;
Xu, Yakun ;
Liu, Guijing ;
Jin, Rencheng ;
Gao, Shanmin .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 570 :332-339
[30]   Large-scale template-free synthesis of nitrogen-doped 3D carbon frameworks as low-cost ultra-long-life anodes for lithium-ion batteries [J].
Wang, Jianren ;
Fan, Hongbo ;
Shen, Yongming ;
Li, Changping ;
Wang, Gang .
CHEMICAL ENGINEERING JOURNAL, 2019, 357 :376-383