TCLP underestimates leaching of arsenic from solid residuals under landfill conditions

被引:140
作者
Ghosh, A [1 ]
Mukiibi, M [1 ]
Ela, W [1 ]
机构
[1] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA
关键词
D O I
10.1021/es030707w
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent revision of the arsenic in drinking water standard will cause many utilities to implement removal technologies. Most of the affected utilities are expected to use adsorption onto solid media for arsenic removal. The arsenic-bearing solid residuals (ABSR) from adsorption processes are to be disposed of in nonhazardous landfills. The Toxicity Characteristic Leaching Procedure (TCLP) tests whether a waste is hazardous or nonhazardous; most solid residuals pass the TCLP. However, the TCLP poorly simulates the alkaline pH, low redox potential, biological activity, long retention time, and organic composition of mature landfills. These same conditions are likely to favor mobilization of arsenic from metal oxide sorbents. This study quantifies leaching of arsenic from Activated Alumina (AA) and Granular Ferric Hydroxide (GFH), two sorbents expected to be widely used for arsenic removal. The sorbents were subjected to the TCLP, the Waste Extraction Test (WET), an actual landfill leachate, and two synthetic leachate solutions. Up to tenfold greater arsenic concentration is extracted by an actual landfill leachate than by the TCLP. Equilibrium leachate concentrations are not achieved within 18 h (the TCLP duration) and an N-2 headspace and end-over-end tumbling increase the rate of arsenic mobilization. However, tests with actual landfill leachate indicate the WET may also underestimate arsenic mobilization in landfills.
引用
收藏
页码:4677 / 4682
页数:6
相关论文
共 25 条
  • [1] Amy G. L., 2000, ARSENIC TREATABILITY
  • [2] Benjamin M.M., 2002, WATER CHEM
  • [3] Bockris JOM, 2003, SURFACE ELECTROCHEMI
  • [4] Biogeochemistry of landfill leachate plumes
    Christensen, TH
    Kjeldsen, P
    Bjerg, PL
    Jensen, DL
    Christensen, JB
    Baun, A
    Albrechtsen, HJ
    Heron, C
    [J]. APPLIED GEOCHEMISTRY, 2001, 16 (7-8) : 659 - 718
  • [5] CORNWELL D, 2003, DISPOSAL WASTES RESU
  • [6] Granular ferric hydroxide - a new adsorbent for the removal of arsenic from natural water
    Driehaus, W
    Jekel, M
    Hildebrandt, U
    [J]. JOURNAL OF WATER SERVICES RESEARCH AND TECHNOLOGY-AQUA, 1998, 47 (01): : 30 - 35
  • [7] ADSORPTION OF INORGANIC POLLUTANTS IN AQUATIC SYSTEMS
    DZOMBAK, DA
    MOREL, FMM
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1987, 113 (04): : 430 - 475
  • [8] ELA W, 2003, P RES BIOS C EXH WAT
  • [9] Arsenate and chromate retention mechanisms on goethite .1. Surface structure
    Fendorf, S
    Eick, MJ
    Grossl, P
    Sparks, DL
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (02) : 315 - 320
  • [10] Arsenate and chromate retention mechanisms on goethite .2. Kinetic evaluation using a pressure-jump relaxation technique
    Grossl, PR
    Eick, M
    Sparks, DL
    Goldberg, S
    Ainsworth, CC
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (02) : 321 - 326