SUPERCONVERGENCE BY M-DECOMPOSITIONS. PART I: GENERAL THEORY FOR HDG METHODS FOR DIFFUSION

被引:39
作者
Cockburn, Bernardo [1 ]
Fu, Guosheng [1 ,2 ]
Sayas, Francisco Javier [3 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
2ND-ORDER ELLIPTIC PROBLEMS; MIXED FINITE-ELEMENTS; DISCONTINUOUS GALERKIN METHODS; ACOUSTIC-WAVE EQUATION; TIME SUPERCONVERGENCE; ERROR ANALYSIS; HYBRIDIZATION; ELASTICITY; ORDER;
D O I
10.1090/mcom/3140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the concept of an M-decomposition and show how to use it to systematically construct hybridizable discontinuous Galerkin and mixed methods for steady-state diffusion methods with superconvergence properties on unstructured meshes.
引用
收藏
页码:1609 / 1641
页数:33
相关论文
共 29 条
[1]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[2]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[3]  
BREZZI F, 1987, RAIRO-MATH MODEL NUM, V21, P581
[4]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[5]   UNIFORM-IN-TIME SUPERCONVERGENCE OF HDG METHODS FOR THE HEAT EQUATION [J].
Chabaud, Brandon ;
Cockburn, Bernardo .
MATHEMATICS OF COMPUTATION, 2012, 81 (277) :107-129
[6]  
Chen Z., 1989, Calcolo, V26, P135, DOI 10.1007/BF02575725
[7]   OPTIMAL DISCONTINUOUS GALERKIN METHODS FOR THE ACOUSTIC WAVE EQUATION IN HIGHER DIMENSIONS [J].
Chung, Eric T. ;
Engquist, Bjoern .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3820-3848
[8]  
Cockburn B, 2009, MATH COMPUT, V78, P1
[9]   A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems [J].
Cockburn, Bernardo ;
Dong, Bo ;
Guzman, Johnny .
MATHEMATICS OF COMPUTATION, 2008, 77 (264) :1887-1916
[10]   Static Condensation, Hybridization, and the Devising of the HDG Methods [J].
Cockburn, Bernardo .
BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 :129-177