Grossone Methodology for Lexicographic Mixed-Integer Linear Programming Problems

被引:3
|
作者
Cococcioni, Marco [1 ]
Cudazzo, Alessandro [1 ]
Pappalardo, Massimo [1 ]
Sergeyev, Yaroslav D. [2 ,3 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] Univ Calabria, Arcavacata Di Rende, Italy
[3] Lobachevsky State Univ, Nizhnii Novgorod, Russia
关键词
Multi-objective optimization; Lexicographic optimization; Mixed Integer Linear Programming; Numerical infinitesimals; INFINITESIMALS;
D O I
10.1007/978-3-030-40616-5_28
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we have addressed lexicographic multi-objective linear programming problems where some of the variables are constrained to be integer. We have called this class of problems LMILP, which stands for Lexicographic Mixed Integer Linear Programming. Following one of the approach used to solve mixed integer linear programming problems, the branch and bound technique, we have extended it to work with infinitesimal/infinite numbers, exploiting the Grossone Methodology. The new algorithm, called GrossBB, is able to solve this new class of problems, by using internally the GrossSimplex algorithm (a recently introduced Grossone extension of the well-known simplex algorithm, to solve lexicographic LP problems without integer constraints). Finally we have illustrated the working principles of the GrossBB on a test problem.
引用
收藏
页码:337 / 345
页数:9
相关论文
共 50 条
  • [1] Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using branch-and-bound and grossone methodology
    Cococcioni, Marco
    Cudazzo, Alessandro
    Pappalardo, Massimo
    Sergeyev, Yaroslav D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84 (84):
  • [2] A new methodology for the general multiparametric mixed-integer linear programming (MILP) problems
    Li, Zukui
    Ierapetritou, Marianthi G.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (15) : 5141 - 5151
  • [3] A Scalable Solution Methodology for Mixed-Integer Linear Programming Problems Arising in Automation
    Bragin, Mikhail A.
    Luh, Peter B.
    Yan, Bing
    Sun, Xiaorong
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2019, 16 (02) : 531 - 541
  • [4] Mixed-integer linear programming for resource leveling problems
    Rieck, Julia
    Zimmermann, Juergen
    Gather, Thorsten
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 221 (01) : 27 - 37
  • [5] An algorithm for multiparametric mixed-integer linear programming problems
    Acevedo, J
    Pistikopoulos, EN
    OPERATIONS RESEARCH LETTERS, 1999, 24 (03) : 139 - 148
  • [6] Towards Lexicographic Multi-Objective Linear Programming using Grossone Methodology
    Cococcioni, Marco
    Pappalardo, Massimo
    Sergeyev, Yaroslav D.
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
  • [7] Mixed-integer bilinear programming problems
    Adams, Warren P.
    Sherali, Hanif D.
    Mathematical Programming, Series A, 1993, 59 (03): : 279 - 305
  • [8] Concurrent processing of mixed-integer non-linear programming problems
    Ostermark, Ralf
    KYBERNETES, 2009, 38 (06) : 970 - 993
  • [9] A flexible platform for mixed-integer non-linear programming problems
    Ostermark, Ralf
    KYBERNETES, 2007, 36 (5-6) : 652 - 670
  • [10] Safe bounds in linear and mixed-integer linear programming
    Arnold Neumaier
    Oleg Shcherbina
    Mathematical Programming, 2004, 99 : 283 - 296