Remediation of Cu(II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass

被引:22
|
作者
Zhao, Bing [1 ]
Xu, Xinyang [1 ]
Zhang, Ran [1 ]
Cui, Miao [2 ]
机构
[1] Northeastern Univ, Sch Resources & Civil Engn, Shenyang 110819, Peoples R China
[2] City Univ Hong Kong, Dept Biomed Sci, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
Pyrolysis; Sewage sludge; Biochar; Magnetic particles; Adsorption; WASTE-WATER; HAZELNUT SHELL; FACILE SYNTHESIS; GRAPHENE OXIDE; HEAVY-METALS; REMOVAL; SORPTION; CATALYST; CADMIUM; MS;
D O I
10.1007/s11356-020-11811-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The novel magnetic biochar (MBC), derived from co-pyrolysis of sewage sludge and biomass loading nanosized iron oxide particles, was used as an environmentally friendly adsorbent. The loading of magnetic particles was in favor of increasing the adsorption capacity and separation from aqueous system for biochar (BC). The physical/chemical characteristics of MBC were revealed by elemental analysis, VSM, SEM-EDS, XRD, FTIR, zeta potential, and batch adsorption-desorption experiments. The nanosized gamma-Fe2O3 particles grown on the surface of biochar showed ferromagnetic property. For the remediation of Cu(II) contamination, MBC-5 showed remarkable adsorption capacity of 67.68 mg/g, and presented a wide pH range of 3.0-6.0. The Langmuir isothermal and pseudo-second-order model could describe adsorption process well. The adsorption mechanism of Cu(II) involved physical adsorption, ion exchange, and electrostatic surface complexation on the surface of MBCs. In the desorption experiments, MBC-5 holds the adsorption efficiency of 81.09% after fifth recycle still, which illustrated a remarkable performance of cyclic utilization by the solid waste of sewage sludge and biomass.
引用
收藏
页码:16408 / 16419
页数:12
相关论文
共 50 条
  • [1] Remediation of Cu(II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass
    Bing Zhao
    Xinyang Xu
    Ran Zhang
    Miao Cui
    Environmental Science and Pollution Research, 2021, 28 : 16408 - 16419
  • [2] Ciprofloxacin adsorption by biochar derived from co-pyrolysis of sewage sludge and bamboo waste
    Li, Jie
    Yu, Guangwei
    Pan, Lanjia
    Li, Chunxing
    You, Futian
    Wang, Yin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (18) : 22806 - 22817
  • [3] Ciprofloxacin adsorption by biochar derived from co-pyrolysis of sewage sludge and bamboo waste
    Jie Li
    Guangwei Yu
    Lanjia Pan
    Chunxing Li
    Futian You
    Yin Wang
    Environmental Science and Pollution Research, 2020, 27 : 22806 - 22817
  • [4] Co-pyrolysis biochar derived from sewage sludge and lignin: Synergetic effect and adsorption properties
    Dai, Qianjin
    Xiang, Wei
    Liu, Qiang
    Wang, Min
    Zhang, Xueyang
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (03):
  • [5] Efficient recovery of phosphate from aqueous solution using biochar derived from co-pyrolysis of sewage sludge with eggshell
    Yang, Jie
    Zhang, Mingliang
    Wang, Haixia
    Xue, Junbing
    Lv, Qi
    Pang, Guibin
    Kassinos, Despo
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (05):
  • [6] Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge
    Yang, Yan-Qin
    Cui, Min-Hua
    Ren, Yi-Gang
    Guo, Jian-Chao
    Zheng, Zhi-Yong
    Liu, He
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2020, 104 (04) : 489 - 496
  • [7] Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge
    Yan-Qin Yang
    Min-Hua Cui
    Yi-Gang Ren
    Jian-Chao Guo
    Zhi-Yong Zheng
    He Liu
    Bulletin of Environmental Contamination and Toxicology, 2020, 104 : 489 - 496
  • [8] Characteristics and Heavy Metal Adsorption Performance of Sewage Sludge-derived Biochar from Co-pyrolysis with Transition Metals
    Chen T.
    Zhou Z.-Y.
    Meng R.-H.
    Liu Y.-T.
    Wang H.-T.
    Lu W.-J.
    Jin J.
    Liu Y.
    Huanjing Kexue/Environmental Science, 2019, 40 (04): : 1842 - 1848
  • [9] Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate
    Liu, Liheng
    Huang, Lin
    Huang, Rong
    Lin, Hua
    Wang, Dunqiu
    Journal of Hazardous Materials, 2021, 403
  • [10] Combining impregnation and co-pyrolysis to reduce the environmental risk of biochar derived from sewage sludge
    Min, Xue
    Ge, Tao
    Li, Hui
    Shi, Yanhong
    Fang, Ting
    Sheng, Bixuan
    Li, Huaiyan
    Dong, Xinju
    CHEMOSPHERE, 2022, 290