TP-Based Fuzzy Control Solutions for Magnetic Levitation Systems

被引:0
作者
Hedrea, Elena-Lorena [1 ]
Precup, Radu-Emil [1 ]
Bojan-Dragos, Claudia-Adina [1 ]
Hedrea, Ciprian [2 ]
机构
[1] Politehn Univ Timisoara, AAI Dept, Timisoara, Romania
[2] Politehn Univ Timisoara, Math Dept, Timisoara, Romania
来源
2019 23RD INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC) | 2019年
关键词
TP-based model transformation technique; fuzzy control; Maglev systems; experimental results; MODEL TRANSFORMATION; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper two cascade control system (CCS) structures designed in order to control the position of the magnetic sphere of a Magnetic levitation laboratory equipment are presented. The proposed CCS structures consist of a TP-based controller (TP-C) in the inner control loop and a Proportional Integral Fuzzy Controller (PI-FC) with integration of controller output (Fuzzy-OI-TP-CS) and a PI-FC with integration of controller input (Fuzzy-II-TP-CS) in the outer control loop, respectively. The parallel distributed compensation technique (PDC), the modal equivalence principle and the modulus optimum method are used in the design of the suggested CCS structures. The experimental results validate the proposed control solutions. Finally, a comparative analysis is also included.
引用
收藏
页码:809 / 814
页数:6
相关论文
共 50 条
[41]   Implementation of an Adaptive Neural Terminal Sliding Mode for Tracking Control of Magnetic Levitation Systems [J].
Thanh Nguyen Truong ;
Anh Tuan Vo ;
Kang, Hee-Jun .
IEEE ACCESS, 2020, 8 :206931-206941
[42]   ROBUST TRACKING IN TWO-DEGREE-OF-FREEDOM CONTROL SYSTEMS: MAGNETIC LEVITATION SYSTEM [J].
Teppa-Garran, P. ;
Faggioni, M. .
LATIN AMERICAN APPLIED RESEARCH, 2023, 53 (04) :303-308
[43]   DESIGN AND FUZZY CONTROL OF A MOVING MAGNETIC LEVITATION DEVICE FOR 3D MANIPULATION OF SMALL OBJECTS [J].
Jazi, Mehdi Molavian ;
Vossoughi, Gholamreza ;
Tajaddodianfar, Farid .
PROCEEDINGS OF THE ASME 10TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2010, VOL 5, 2010, :255-261
[44]   Generalised Proportional Integral Control for Magnetic Levitation Systems Using a Tangent Linearisation Approach [J].
Belmonte, Lidia M. ;
Segura, Eva ;
Fernandez-Caballero, Antonio ;
Somolinos, Jose A. ;
Morales, Rafael .
MATHEMATICS, 2021, 9 (12)
[45]   Model Predictive Controllers for Magnetic Levitation Systems [J].
Sgaverdea, Simona ;
Bojan-Dragos, Claudia-Adina ;
Precup, Radu-Emil ;
Preitl, Stefan ;
Stinean, Alexandra-Iulia .
2015 IEEE 10TH JUBILEE INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2015, :171-176
[46]   Networked Predictive Control of Magnetic Levitation System [J].
Wang, Bo ;
Liu, Guo-Ping ;
Rees, David .
2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, :4100-+
[47]   Results on Tensor Product-based Model Transformation of Magnetic Levitation Systems [J].
Hedrea, Elena-Lorena ;
Precup, Radu-Emil ;
Bojan-Dragos, Claudia-Adina .
ACTA POLYTECHNICA HUNGARICA, 2019, 16 (09) :93-111
[48]   Parameter Estimator based Feedback Linearization Control strategy of Magnetic Levitation System [J].
Mansi, B. ;
Nachiket, S. ;
Sheikh, A. ;
Sunny, K. ;
Kazi, F. .
PROCEEDINGS OF 2021 31ST AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2021,
[49]   Suboptimal Control of Magnetic Levitation (Maglev) System [J].
Pati, Avadh ;
Negi, Richa .
2014 3RD INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (ICRITO) (TRENDS AND FUTURE DIRECTIONS), 2014,
[50]   Robust I-Fuzzy Controller for Magnetic Ball Levitation [J].
Suman, Dhanraj ;
Bhatt, Rajesh .
2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 1, 2017, :618-621