Quasigroupoids and weak Hopf quasigroups

被引:5
|
作者
Alonso Alvarez, J. N. [1 ]
Fernandez Vilaboa, J. M. [2 ]
Gonzalez Rodriguez, R. [3 ]
机构
[1] Univ Vigo, Dept Matemat, Campus Univ Lagoas Marcosende, E-36280 Vigo, Spain
[2] Univ Santiago de Compostela, Dept Matemat, E-15771 Santiago De Compostela, Spain
[3] Univ Vigo, Dept Matemat Aplicada 2, Campus Univ Lagoas Marcosende, E-36310 Vigo, Spain
关键词
Quasigroupoid; Quasigroup; Weak Hopf quasigroup; Hopf quasigroup; Grouplike element;
D O I
10.1016/j.jalgebra.2020.10.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the category of finite quasigroupoids is equivalent to the one of pointed cosemisimple weak Hopf quasigroups over a given field K. As a consequence, if K is algebraically closed, we obtain that the categories of finite quasigroupoids and cocommutative cosemisimple weak Hopf quasigroups are equivalent. Moreover the restriction of the previous equivalence to the category of quasigroups (loops with the inverse property) provides a categorical equivalence between the categories of quasigroups and of pointed cosemisimple Hopf quasigroups over K and, as in the weak case, if K is algebraically closed, the category of quasigroups is equivalent to the one of cocommutative cosemisimple Hopf quasigroups. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:408 / 436
页数:29
相关论文
共 50 条
  • [41] TWISTED SMASH PRODUCTS AND L-R SMASH PRODUCTS FOR BIQUASIMODULE HOPF QUASIGROUPS
    Fang, Xiao-Li
    Torrecillas, Blas
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) : 4204 - 4234
  • [42] Projections of weak braided Hopf algebras
    Alonso Alvarez, Jose Nicanor
    Fernandez Vilaboa, Jose Manuel
    Gonzalez Rodriguez, Ramon
    Soneira Calvo, Carlos
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (05) : 877 - 906
  • [43] Projections of weak braided Hopf algebras
    José Nicanor Alonso Álvarez
    José Manuel Fernández Vilaboa
    Ramón González Rodríguez
    Carlos Soneira Calvo
    Science China Mathematics, 2011, 54 : 877 - 906
  • [44] The Structure of Hopf Algebras with a Weak Projection
    Schauenburg P.
    Algebras and Representation Theory, 2000, 3 (03) : 187 - 211
  • [45] S-Hopf Quivers and Semilattice Graded Weak Hopf Algebras
    Cao, Haijun
    ALGEBRA COLLOQUIUM, 2013, 20 (01) : 109 - 122
  • [46] Projections of weak braided Hopf algebras
    ALONSO LVAREZ Jos Nicanor
    FERNNDEZ VILABOA Jos Manuel
    GONZLEZ RODRíIGUEZ Ramón
    SONEIRA CALVO Carlos
    ScienceChina(Mathematics), 2011, 54 (05) : 877 - 906
  • [47] Frobenius extensions and weak Hopf algebras
    Kadison, L
    Nikshych, D
    JOURNAL OF ALGEBRA, 2001, 244 (01) : 312 - 342
  • [48] THE STRUCTURE THEOREMS OF WEAK HOPF ALGEBRAS
    Zhang, Liang-yun
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (04) : 1269 - 1281
  • [49] Classifying (weak) coideal subalgebras of weak Hopf C*-algebras
    Vainerman, Leonid
    Vallin, Jean-Michel
    JOURNAL OF ALGEBRA, 2020, 550 : 333 - 357
  • [50] Twisting theory for weak Hopf algebras
    Chen Ju-zhen
    Zhang Yan
    Wang Shuan-hong
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2008, 23 (01) : 91 - 100