Hierarchically Pomegranate-Like MnO@porous Carbon Microspheres as an Enhanced-Capacity Anode for Lithium-Ion Batteries

被引:18
作者
Gao, Ming [1 ]
Huang, Shouji [1 ]
Zhang, Qi [1 ]
Xu, Guobao [2 ]
Chen, Zhuo [1 ]
Xiao, Yufeng [1 ]
Yang, Liwen [1 ]
Cao, Juexian [3 ]
Wei, Xiaolin [1 ]
机构
[1] Xiangtan Univ, Sch Phys & Optoelect Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Mat Sci & Engn, Natl Prov Lab Special Funct Thin Film Mat, Xiangtan 411105, Hunan, Peoples R China
[3] Xiangtan Univ, Hunan Inst Adv Sensing & Informat Technol, Xiangtan 411105, Hunan, Peoples R China
关键词
pomegranate-like materials; PCMS@MnO; anodes; lithium-ion batteries; carbon microspheres; HIGH-TAP-DENSITY; ELECTROCHEMICAL PERFORMANCE; FACILE SYNTHESIS; CATHODE MATERIAL; DOPED CARBON; STORAGE; NANOPARTICLES; NANOSHEETS; COMPOSITE; HYBRID;
D O I
10.1002/celc.201900405
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Transition-metal oxides have attracted much attention as promising anode materials, owing to high theoretical specific capacity for lithium-ion batteries (LIBs). However, rapid performance degradation derived from poor electrical conductivity and drastic volume changes during the repeated lithium insertion/extraction processes has limited their practical applications. In this work, we design and prepare pomegranate-like microspheres of nano-sized MnO particles with gaps among them as the core and porous carbon as the shell (designated as PCMS@MnO) by using a facile three-step process. In such unique PCMS@MnO, the porous carbon shell from phenolic resin is beneficial for the electronic conductivity and wettability, whereas the nano-sized MnO particles with gaps among them confined in the porous carbon shell can effectively prevent aggregation and pulverization of active materials. As an anode material for LIBs, the PCMS@MnO with a carbon content of about 12 wt % exhibits remarkably high reversible capability (935 mAh g(-1) at 100 mA g(-1)), outstanding rate performance, and superior cycling stability (527 mAh g(-1) of 2000 mA g(-1) after 2000 cycles). Our results suggest a great potential of pomegranate-like transition-metal oxide-based composites as anode materials in high-performance LIBs.
引用
收藏
页码:2891 / 2900
页数:10
相关论文
共 62 条
[1]   Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors [J].
Brezesinski, Torsten ;
Wang, John ;
Polleux, Julien ;
Dunn, Bruce ;
Tolbert, Sarah H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1802-1809
[2]   Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries [J].
Chen, Li-Feng ;
Ma, Sheng-Xiang ;
Lu, Shu ;
Feng, Yue ;
Zhang, Jia ;
Xin, Sen ;
Yu, Shu-Hong .
NANO RESEARCH, 2017, 10 (01) :1-11
[3]   Pomegranate-like N,P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution [J].
Chen, Yu-Yun ;
Zhang, Yun ;
Jiang, Wen-Jie ;
Zhang, Xing ;
Dai, Zhihui ;
Wan, Li-Jun ;
Hu, Jin-Song .
ACS NANO, 2016, 10 (09) :8851-8860
[4]   Embedding MnO@Mn3O4 Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage [J].
Chu, Yanting ;
Guo, Lingyu ;
Xi, Baojuan ;
Feng, Zhenyu ;
Wu, Fangfang ;
Lin, Yue ;
Liu, Jincheng ;
Sun, Di ;
Feng, Jinkui ;
Qian, Yitai ;
Xiong, Shenglin .
ADVANCED MATERIALS, 2018, 30 (06)
[5]   High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries [J].
Cui, Zhonghui ;
Guo, Xiangxin ;
Li, Hong .
JOURNAL OF POWER SOURCES, 2013, 244 :731-735
[6]   Improved Li+ Storage through Homogeneous N-Doping within Highly Branched Tubular Graphitic Foam [J].
Dong, Jinyang ;
Xue, Yanming ;
Zhang, Chao ;
Weng, Qunhong ;
Dai, Pengcheng ;
Yang, Yijun ;
Zhou, Min ;
Li, Cuiling ;
Cui, Qiuhong ;
Kang, Xiaohong ;
Tang, Chengchun ;
Bando, Yoshio ;
Golberg, Dmitri ;
Wang, Xi .
ADVANCED MATERIALS, 2017, 29 (06)
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Ordered Network of Interconnected SnO2 Nanoparticles for Excellent Lithium-Ion Storage [J].
Etacheri, Vinodkumar ;
Seisenbaeva, Gulaim A. ;
Caruthers, James ;
Daniel, Geoffrey ;
Nedelec, Jean-Marie ;
Kessler, Vadim G. ;
Pol, Vilas G. .
ADVANCED ENERGY MATERIALS, 2015, 5 (05)
[9]   Porous micrometer-sized MnO cubes as anode of lithium ion battery [J].
Fan, Xiaoyong ;
Li, Siheng ;
Lu, Li .
ELECTROCHIMICA ACTA, 2016, 200 :152-160
[10]   Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes [J].
Gu, Xin ;
Yue, Jie ;
Chen, Liang ;
Liu, Shuo ;
Xu, Huayun ;
Yang, Jian ;
Qian, Yitai ;
Zhao, Xuebo .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (03) :1037-1041