Large solutions for the Laplacian with a power nonlinearity given by a variable exponent

被引:14
作者
Garcia-Melian, Jorge [2 ]
Rossi, Julio D. [1 ]
Sabina de Lis, Jose C. [2 ]
机构
[1] IMDEA Matemat, Madrid, Spain
[2] Univ La Laguna, Dpto Anal Matemat, San Cristobal la Laguna 38271, Spain
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 03期
关键词
Large solutions; Existence and uniqueness; Variable exponents; BOUNDARY BLOW-UP; SEMILINEAR ELLIPTIC-EQUATIONS; ASYMPTOTIC-BEHAVIOR; EXPLOSIVE SOLUTIONS; UNIQUENESS; EXISTENCE; WEIGHTS;
D O I
10.1016/j.anihpc.2008.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider positive boundary blow-up solutions to the problem Delta u = u(q(x)) in a smooth bounded domain Omega subset of R-n. The exponent q(x) is allowed to be a variable positive Holder continuous function. The issues of existence, asymptotic behavior near the boundary and uniqueness of positive solutions are considered. Furthermore, since q(x) is also allowed to take values less than one, it is shown that the blow up of solutions on partial derivative Omega is compatible with the occurrence of dead cores, i.e., nonempty interior regions where solutions vanish. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:889 / 902
页数:14
相关论文
共 28 条
[2]  
[Anonymous], HIROSHIMA MATH J
[3]  
[Anonymous], 2007, Handbook of Differential Equations: Stationary Partial Differential Equations. Handbook of Differential Equations
[4]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[5]  
BANDLE C, 1990, CR ACAD SCI I-MATH, V311, P91
[6]  
Bieberbach L., 1916, Math. Ann, V77, P173, DOI [10.1007/BF01456901, DOI 10.1007/BF01456901]
[7]   Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights [J].
Chuaqui, M ;
Cortazar, C ;
Elgueta, M ;
Garcia-Melian, J .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (04) :653-662
[8]   On an elliptic problem with boundary blow-up and a singular weight:: the radial case [J].
Chuaqui, M ;
Cortázar, C ;
Elgueta, M ;
Flores, C ;
Letelier, R ;
García-Melián, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1283-1297
[9]   The influence of domain geometry in boundary blow-up elliptic problems [J].
del Pino, M ;
Letelier, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (06) :897-904
[10]  
Delgado M, 2004, ADV NONLINEAR STUD, V4, P273