SOME ITERATED FRACTIONAL q-INTEGRALS AND THEIR APPLICATIONS

被引:17
作者
Cao, Jian [1 ]
Srivastava, H. M. [2 ,3 ]
Liu, Zhi-Guo [4 ,5 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W3R4, Canada
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
[5] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词
iterated fractional q-integrals; fractional q-identities; Rajkovic-Marinkovic-Stankovic polynomials; bilinear generating functions; fractional q-Leibniz formula; Srivastava-Agarwal type generating functions; Rogers-Szego polynomials; Al-Salam-Carlitz polynomials; multilinear generating functions; Q-DIFFERENCE EQUATIONS; GENERATING-FUNCTIONS; Q-POLYNOMIALS; HYPERGEOMETRIC-FUNCTIONS; HAHN POLYNOMIALS; Q-DERIVATIVES; Q-BETA; CALCULUS; EXTENSION; FORMULAS;
D O I
10.1515/fca-2018-0036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the fact that fractional q-integrals play important roles in numerous areas of mathematical, physical and engineering sciences, it is natural to consider the corresponding iterated fractional q-integrals. The main object of this paper is to define these iterated fractional q-integrals, to build the relations between iterated fractional q-integrals and certain families of generating functions for q-polynomials and to generalize two fractional q-identities which are given in a recent work [Fract. Calc. Appl. Anal. 10 (2007), 359-373]. As applications of the main results presented here, we deduce several bilinear generating functions, Srivastava-Agarwal type generating functions, multilinear generating functions and U(n+1) type generating functions for the Rajkovic-Marinkovic-Stankovic polynomials.
引用
收藏
页码:672 / 695
页数:24
相关论文
共 45 条
  • [21] Note on a q-contour integral formula
    Fang, Jian-Ping
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 292 - 297
  • [22] Gasper G., 2004, BASIC HYPERGEOMETRIC, V96
  • [23] Ghorpade S. R., 2010, UDERGRANDUATE TEXTS
  • [24] Investigation of Isoelectronic Doping in p-GaN Based on the Thermal Quenching of UVL Band
    Huang, Yang
    Liu, Zhiqiang
    Yi, Xiaoyan
    Guo, Yao
    Yuan, Guodong
    Wang, Junxi
    Wang, Guohong
    Li, Jinmin
    [J]. IEEE PHOTONICS JOURNAL, 2016, 8 (05):
  • [25] Ismail M. E. H., 2009, ENCY MATH ITS APPL, V98
  • [26] Liu Z.-G., 2013, Ramanujan Math. Soc. Lect. Notes Ser., V20, P213
  • [27] Liu ZG, 2015, RAMANUJAN J, V38, P481, DOI 10.1007/s11139-014-9632-1
  • [28] Two expansion formulas involving the Rogers-Szego polynomials with applications
    Liu, Zhi-Guo
    Zeng, Jiang
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (02) : 507 - 525
  • [29] Two q-difference equations and q-operator identities
    Liu, Zhi-Guo
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (11) : 1293 - 1307
  • [30] Mansour Z. S. I., 2009, FRACT CALC APPL ANAL, V12, P159