Substructure hardening in duplex low density steel

被引:39
作者
Abedi, H. R. [1 ]
Hanzaki, A. Zarei [1 ]
Ou, Keng-Liang [2 ,3 ]
Yu, Chih-Hua [2 ,3 ]
机构
[1] Univ Tehran, Complex Lab Hot Deformat & Thermomech Proc High P, Sch Met & Mat Engn, Coll Engn, Tehran, Iran
[2] Taipei Med Univ, Sch Dent, Coll Oral Med, Taipei 110, Taiwan
[3] China Med Univ Hosp, Biomed Engn Res & Dev Ctr, Taichung 404, Taiwan
关键词
Duplex low density steel; Strain-hardening; Substructure refinement; Subgrain; TENSILE DEFORMATION; INDUCED PLASTICITY; HIGH-STRENGTH; BEHAVIOR; DISLOCATION; DUCTILITY;
D O I
10.1016/j.matdes.2016.12.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work was conducted to evaluate the effects of substructure development on the strain hardening behavior of Fe-17.5Mn-83Al-0.74C-0.14Si lightweight steel. This was performed applying tensile testing method at ambient temperature. The significant strain hardening capability of the experimental steel is attributed to the cell structure formation and its progressive evolution to subgrains over a wide range of applied strain. The continuous subgrain refinement with the applied strain could lead to the nano-size partitioning of the austenite (similar to 530 nm) and ferrite (similar to 500 nm) grains. The size of substructure (mesh length) appears to be stabilized at true strains above 0.35, thereby reducing the rate of work hardening and inducing subgrain rotation to higher misorientations. The contribution of substructure refinement is significant and possesses a high portion of the measured flow stress (similar to 550 MPa for austenite and similar to 70 MPa for ferrite at the true strain of 0.5). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:472 / 480
页数:9
相关论文
共 35 条
[1]   Substructure induced twinning in low density steel [J].
Abedi, H. R. ;
Hanzaki, A. Zarei ;
Haghdadi, N. ;
Hodgson, P. D. .
SCRIPTA MATERIALIA, 2017, 128 :69-73
[2]   Orientation dependence of twinning and strain hardening behaviour of a high manganese twinning induced plasticity steel with polycrystalline structure [J].
Beladi, H. ;
Timokhina, I. B. ;
Estrin, Y. ;
Kim, J. ;
De Cooman, B. C. ;
Kim, S. K. .
ACTA MATERIALIA, 2011, 59 (20) :7787-7799
[3]   Strain hardening behavior of aluminum alloyed Hadfield steel single crystals [J].
Canadinc, D ;
Sehitoglu, H ;
Maier, HJ ;
Chumlyakov, YI .
ACTA MATERIALIA, 2005, 53 (06) :1831-1842
[4]   The role of dense dislocation walls on the deformation response of aluminum alloyed hadfield steel polycrystals [J].
Canadinc, D. ;
Sehitoglu, H. ;
Maier, H. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 454 :662-666
[5]   De-twinning via secondary twinning in face-centered cubic alloys [J].
Cao, Y. ;
Wang, Y. B. ;
Chen, Z. B. ;
Liao, X. Z. ;
Kawasaki, M. ;
Ringer, S. P. ;
Langdon, T. G. ;
Zhu, Y. T. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 578 :110-114
[6]   Thermodynamic modeling of the stacking fault energy of austenitic steels [J].
Curtze, S. ;
Kuokkala, V. -T. ;
Oikari, A. ;
Talonen, J. ;
Hanninen, H. .
ACTA MATERIALIA, 2011, 59 (03) :1068-1076
[7]   In-situ strain localization analysis in low density transformation-twinning induced plasticity steel using digital image correlation [J].
Eskandari, M. ;
Yadegari-Dehnavi, M. R. ;
Zarei-Hanzaki, A. ;
Mohtadi-Bonab, M. A. ;
Basu, R. ;
Szpunar, J. A. .
OPTICS AND LASERS IN ENGINEERING, 2015, 67 :1-16
[8]   The isotropic shear modulus of multicomponent Fe-base solid solutions [J].
Ghosh, G ;
Olson, GB .
ACTA MATERIALIA, 2002, 50 (10) :2655-2675
[9]   High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development -: properties -: application [J].
Grässel, O ;
Krüger, L ;
Frommeyer, G ;
Meyer, LW .
INTERNATIONAL JOURNAL OF PLASTICITY, 2000, 16 (10-11) :1391-1409
[10]   Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels [J].
Gutierrez-Urrutia, I. ;
Raabe, D. .
SCRIPTA MATERIALIA, 2013, 68 (06) :343-347