Vanishing of the top local cohomology modules over Noetherian rings

被引:10
作者
Divaani-Aazar, Kamran [1 ]
机构
[1] Az Zahra Univ, Dept Math, Tehran 19834, Iran
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2009年 / 119卷 / 01期
关键词
Artinian modules; attached prime ideals; cohomological dimension; formally isolated; local cohomology; secondary representations; ALGEBRAIC-VARIETIES; DIMENSION; IDEAL;
D O I
10.1007/s12044-009-0003-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a (not necessarily local) Noetherian ring and M a finitely generated R-module of finite dimension d. Let a be an ideal of R and M denote the intersection of all prime ideals p is an element of Supp(R) H-a(d)(M). It is shown that H-d(a)(M) similar or equal to H-M(d)(M)/Sigma(n is an element of N) < M > (0: (HMd(M))a(n)), where for an Artinian R-module A we put (M) A = boolean AND M-n is an element of N(n) A. As a consequence, it is proved that for all ideals a of R, there are only finitely many non-isomorphic top local cohomology modules H-a(d)(M) having the same support. An addition, we establish an analogue of the Lichtenbaum-Hartshorne vanishing theorem over rings that need not be local.
引用
收藏
页码:23 / 35
页数:13
相关论文
共 18 条
[1]  
[Anonymous], 1998, COMMUTATIVE ALGEBRA
[2]   A rigidity result for highest order local cohomology modules [J].
Brodmann, M .
ARCHIV DER MATHEMATIK, 2002, 79 (02) :87-92
[3]  
BRODMANN MP, 1998, LOCAL COHORNOLOGY AL
[4]   Some rigidity results for highest order local cohomology modules [J].
Dibaei, Mohammad T. ;
Yassemi, Siamak .
ALGEBRA COLLOQUIUM, 2007, 14 (03) :497-504
[5]   Top local cohomology modules [J].
Dibaei, Mohammad T. ;
Yassemi, Siamak .
ALGEBRA COLLOQUIUM, 2007, 14 (02) :209-214
[6]   Attached primes of the top local cohomology modules with respect to an ideal [J].
Dibaei, MT ;
Yassemi, S .
ARCHIV DER MATHEMATIK, 2005, 84 (04) :292-297
[7]   Artinianness of local cohomology modules of ZD-modules [J].
Divaani-Aazar, K ;
Esmkhani, MA .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (08) :2857-2863
[8]   Cohomological dimension of certain algebraic varieties [J].
Divaani-Aazar, K ;
Naghipour, R ;
Tousi, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3537-3544
[9]   Ideal topologies, local cohomology and connectedness [J].
Divaani-Aazar, K ;
Schenzel, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 131 :211-226
[10]  
DIVAANIAAZAR K, 2001, C MATH, V89, P147