Coding, channel capacity, and noise resistance in communicating with chaos

被引:89
作者
Bollt, E
Lai, YC
Grebogi, C
机构
[1] UNIV MARYLAND,INST PLASMA RES,COLLEGE PK,MD 20742
[2] USN ACAD,DEPT MATH,ANNAPOLIS,MD 21402
[3] UNIV KANSAS,DEPT PHYS & ASTRON,LAWRENCE,KS 66045
[4] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
[5] UNIV POTSDAM,INST THEORET PHYS,D-14415 POTSDAM,GERMANY
关键词
D O I
10.1103/PhysRevLett.79.3787
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent work has considered the possibility of utilizing symbolic representations of controlled chaotic orbits for digital communication. We argue that dynamically a coding scheme usually leads to trajectories that live on a nonattracting but noise-resisting chaotic saddle embedded in the chaotic attractor. We present analyses and numerical computation which indicate that the channel capacity of the chaotic saddle has a devil-staircase-like behavior as a function of the noise-resisting strength. The implication is that nonlinear digital communication using chaos can yield a substantial channel capacity even in a noisy environment. [S0031-9007(97)04462-1].
引用
收藏
页码:3787 / 3790
页数:4
相关论文
共 10 条
[1]  
Blahut R.E., 1988, PRINCIPLES PRACTICE
[2]   Encoding information in chemical chaos by controlling symbolic dynamics [J].
Bollt, EM ;
Dolnik, M .
PHYSICAL REVIEW E, 1997, 55 (06) :6404-6413
[3]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[4]   TOPOLOGICAL AND METRIC PROPERTIES OF HENON-TYPE STRANGE ATTRACTORS [J].
CVITANOVIC, P ;
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 38 (03) :1503-1520
[5]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[6]   COMMUNICATING WITH CHAOS [J].
HAYES, S ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1993, 70 (20) :3031-3034
[7]   EXPERIMENTAL CONTROL OF CHAOS FOR COMMUNICATION [J].
HAYES, S ;
GREBOGI, C ;
OTT, E ;
MARK, A .
PHYSICAL REVIEW LETTERS, 1994, 73 (13) :1781-1784
[8]   A PROCEDURE FOR FINDING NUMERICAL TRAJECTORIES ON CHAOTIC SADDLES [J].
NUSSE, HE ;
YORKE, JA .
PHYSICA D, 1989, 36 (1-2) :137-156
[9]  
Robinson C., 1995, Dynamical systems: stability, symbolic dynamics, and chaos
[10]  
Rosa E, 1997, PHYS REV LETT, V78, P1247, DOI 10.1103/PhysRevLett.78.1247