Incremental general regression with expectation maximization for learning finite mixtures using data with missing values

被引:0
作者
Abas, Ahmed R. [1 ]
机构
[1] Umm Al Qura Univ, Coll Comp Lith, Dept Comp Sci, Makka Al Mukarrama, Saudi Arabia
来源
WORLD CONGRESS ON COMPUTER & INFORMATION TECHNOLOGY (WCCIT 2013) | 2013年
关键词
Clustering; Expectation Maximization; Finite Mixtures; Missing Values; Incremental General Regression Neural Network;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Finite mixture models (FMM) is a pattern recognition method, in which parameters are determined from complete data using the expectation maximization (EM) algorithm. This paper presents an algorithm for determining parameters of the finite mixture models using data having missing values. Compared with a developed EM algorithm that is proposed earlier the proposed algorithm has proved good performance when the features containing missing values are at least moderately correlated with some of the complete features in the input data set.
引用
收藏
页数:6
相关论文
共 12 条
[1]   Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data [J].
Abas, Ahmed R. .
EGYPTIAN INFORMATICS JOURNAL, 2012, 13 (02) :103-109
[2]   Using incremental general regression neural network for learning mixture models from incomplete data [J].
Abas, Ahmed R. .
EGYPTIAN INFORMATICS JOURNAL, 2011, 12 (03) :185-196
[3]  
Abas AR., 2010, EGYPTIAN COMPUTER J, V37, P1
[4]  
Bishop CM., 1995, NEURAL NETWORKS PATT
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]   Unsupervised learning of finite mixture models [J].
Figueiredo, MAT ;
Jain, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (03) :381-396
[7]  
Hunt L.A., 1996, THESIS U WAIKATO NZ
[8]  
Little R. J. A., 1987, STAT ANAL MISSING DA
[9]  
Roberts S., 1999, J PATTERN RECOGNITIO, V33, P833
[10]   Minimum-entropy data partitioning using reversible jump Markov chain Monte Carlo [J].
Roberts, SJ ;
Holmes, C ;
Denison, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (08) :909-914