Perturbations of dynamic equations

被引:3
作者
Bohner, M [1 ]
Hering, R [1 ]
机构
[1] Univ Missouri, Dept Math & Stat, Rolla, MO 65409 USA
关键词
time scales; perturbed dynamic equations; periodic dynamic equations;
D O I
10.1080/1026190290017360
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give conditions on the coefficient matrix for certain perturbed linear dynamic equations on time scales ensuring that there exists a bounded solution (which is explicitly given) to which all other solutions converge, and similarly conditions ensuring a bounded solution from which all other solutions diverge. We also consider periodic time scales and corresponding linear dynamic equations with periodic coefficients and prove similar statements about periodic solutions to which all other solutions converge or from which all other solutions diverge.
引用
收藏
页码:295 / 305
页数:11
相关论文
共 10 条
[1]  
Agarwal R. P., 1999, RESULTS MATH, V35, P3, DOI [DOI 10.1007/BF03322019, 10.1007/BF03322019]
[2]   Hamiltonian systems on time scales [J].
Ahlbrandt, CD ;
Bohner, M ;
Ridenhour, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) :561-578
[3]  
AULBACH B, 1990, MATH RES, V59, P9
[4]   Asymptotic behavior of dynamic equations on time scales [J].
Bohner, M ;
Lutz, DA .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2001, 7 (01) :21-50
[5]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction With Applications, DOI [10.1007/978-1-4612-0201-1, DOI 10.1007/978-1-4612-0201-1]
[6]  
BOHNER M, 2001, IN PRESS J INEQUAL A
[7]  
Dosly O, 2001, J DIFFER EQU APPL, V7, P265
[8]  
Hilger S., 1999, DYNAM SYSTEMS APPL, V8, P471
[9]  
Hilger S., 1990, Results Math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
[10]  
KAYMAKCALAN B, 1996, DYNAMIC SYSTEMS MEAS, V370