Resource-Efficient Chemistry on Quantum Computers with the Variational Quantum Eigensolver and the Double Unitary Coupled-Cluster Approach

被引:56
作者
Metcalf, Mekena [1 ]
Bauman, Nicholas P. [2 ]
Kowalski, Karol [2 ]
de Jong, Wibe A. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99352 USA
关键词
MULTIREFERENCE PERTURBATION-THEORY; MODEL-SPACE; FOCK-SPACE; SYSTEMS; FORMULATION; ALGORITHMS; FORMALISM;
D O I
10.1021/acs.jctc.0c00421
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Applications of quantum simulation algorithms to obtain electronic energies of molecules on noisy intermediate-scale quantum (NISQ) devices require careful consideration of resources describing the complex electron correlation effects. In modeling second-quantized problems, the biggest challenge confronted is that the number of qubits scales linearly with the size of the molecular basis. This poses a significant limitation on the size of the basis sets and the number of correlated electrons included in quantum simulations of chemical processes. To address this issue and enable more realistic simulations on NISQ computers, we employ the double unitary coupled-cluster (DUCC) method to effectively downfold correlation effects into the reduced-size orbital space, commonly referred to as the active space. Using downfolding techniques, we demonstrate that properly constructed effective Hamiltonians can capture the effect of the whole orbital space in small-size active spaces. Combining the downfolding preprocessing technique with the variational quantum eigensolver, we solve for the ground-state energy of H-2, Li-2, and BeH2 in the cc-pVTZ basis using the DUCC-reduced active spaces. We compare these results to full configuration-interaction and high-level coupled-cluster reference calculations.
引用
收藏
页码:6165 / 6175
页数:11
相关论文
共 69 条
[1]  
Abraham H., 2019, QISKIT OPEN SOURCE F, DOI DOI 10.5281/ZENODO.2562110
[2]   Coupled Cluster Green's function formulations based on the effective Hamiltonians [J].
Bauman, Nicholas P. ;
Peng, Bo ;
Kowalski, Karol .
MOLECULAR PHYSICS, 2020, 118 (19-20)
[3]   Quantum simulations of excited states with active-space downfolded Hamiltonians [J].
Bauman, Nicholas P. ;
Low, Guang Hao ;
Kowalski, Karol .
JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (23)
[4]   Downfolding of many-body Hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms [J].
Bauman, Nicholas P. ;
Bylaska, Eric J. ;
Krishnamoorthy, Sriram ;
Low, Guang Hao ;
Wiebe, Nathan ;
Granade, Christopher E. ;
Roetteler, Martin ;
Troyer, Matthias ;
Kowalski, Karol .
JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (01)
[5]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[6]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226
[7]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915
[8]   The Density Matrix Renormalization Group in Quantum Chemistry [J].
Chan, Garnet Kin-Lic ;
Sharma, Sandeep .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 :465-481
[9]   Comparison of low-order multireference many-body perturbation theories -: art. no. 134105 [J].
Chaudhuri, RK ;
Freed, KF ;
Hose, G ;
Piecuch, P ;
Kowalski, K ;
Wloch, M ;
Chattopadhyay, S ;
Mukherjee, D ;
Rolik, Z ;
Szabados, A ;
Tóth, G ;
Surján, PR .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (13)
[10]   On the Relationship Between Continuous- and Discrete-Time Quantum Walk [J].
Childs, Andrew M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 294 (02) :581-603