Hamilton-Jacobi theory and parametric analysis in fully convex problems of optimal control

被引:20
作者
Rockafellar, RT [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
Bolza problems; calculus of variations; convex analysis; cost-to-go; nonsmooth analysis; optimal control; value functions; variational analysis; Hamilton-Jacobi theory;
D O I
10.1023/B:JOGO.0000026459.51919.0e
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For optimal control problems satisfying convexity conditions in the state as well as the velocity, the optimal value is studied as a function of the time horizon and other parameters. Conditions are identified in which this optimal value function is locally Lipschitz continuous and semidifferentiable, or even differentiable. The Hamilton-Jacobi theory for such control problems provides the framework in which the results are obtained.
引用
收藏
页码:419 / 431
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[2]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[3]  
GALBRAITH G, ROLE COSMICALLY LIPS
[4]  
GALBRAITH GN, 1999, THESIS U WASHINGTON
[5]  
GOEBEL R, 2002, CONVEX ANAL, V9
[6]  
Rockafellar, 1997, VARIATIONAL ANAL
[7]  
Rockafellar, 2015, CONVEX ANAL
[8]   Saddle Points of Hamiltonian Systems in Convex Problems of Lagrange [J].
Rockafellar, R. T. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1973, 12 (04) :367-390
[9]  
Rockafellar R.T., 2001, NONCONVEX OPTIMIZATI, P135, DOI [10.1007/978-1-4613-0279-7_7, DOI 10.1007/978-1-4613-0279-7_7]
[10]   CONVEXITY IN HAMILTON-JACOBI THEORY II: ENVELOPE REPRESENTATIONS [J].
Rockafellar, R. Tyrrell ;
Wolenski, Peter R. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (05) :1351-1372