Cortical control of a whisking central pattern generator

被引:39
作者
Cramer, Nathan P.
Keller, Asaf
机构
[1] Univ Maryland, Sch Med, Dept Anat & Neurobiol, Baltimore, MD 21201 USA
[2] Univ Maryland, Sch Med, Program Neurosci, Baltimore, MD 21201 USA
关键词
D O I
10.1152/jn.00071.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Whether the motor cortex regulates voluntary movements by generating the motor pattern directly or by acting through subcortical central pattern generators (CPGs) remains a central question in motor control. Using the rat whisker system, an important model system of mammalian motor control, we develop an anesthetized preparation to investigate the interaction between the motor cortex and a whisking CPG. Using this model we investigate the involvement of a serotonergic component of the whisking CPG in determining whisking kinematics and the mechanisms through which drive from the CPG is converted into movements by vibrissa motor units. Consistent with an action of the vibrissa motor cortex (vMCx) on a subcortical CPG, the frequency of whisking evoked by intracortical microstimulation (ICMS) of vMCx differed significantly from the stimulation frequency, whereas whisking onset latencies correlated negatively with stimulation intensity. Further, ICMS-evoked whisking was suppressed by a serotonin receptor antagonist, supporting previous findings that the whisking CPG contains a significant serotonergic component. The amplitude of ICMS-evoked whisking was correlated with the number of active motor units - isolated from vibrissal EMGs or recorded directly from vibrissa motoneurons - and their activity level. In addition, whisking frequency was correlated with the firing rate of these motoneurons. These findings support the hypothesis that vMCx regulates whisking through its actions on a subcortical CPG.
引用
收藏
页码:209 / 217
页数:9
相关论文
共 39 条
[1]   Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat [J].
Ahrens, KF ;
Kleinfeld, D .
JOURNAL OF NEUROPHYSIOLOGY, 2004, 92 (03) :1700-1707
[2]   Pattern generation [J].
Arshavsky, YI ;
Deliagina, TG ;
Orlovsky, GN .
CURRENT OPINION IN NEUROBIOLOGY, 1997, 7 (06) :781-789
[3]   Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking [J].
Berg, RW ;
Kleinfeld, D .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (05) :2950-2963
[4]   Rhythmic whisking by rat: Retraction as well as protraction of the vibrissae is under active muscular control [J].
Berg, RW ;
Kleinfeld, D .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 89 (01) :104-117
[5]   Optoelectronic monitoring of individual whisker movements in rats [J].
Bermejo, R ;
Houben, D ;
Zeigler, HP .
JOURNAL OF NEUROSCIENCE METHODS, 1998, 83 (02) :89-96
[6]   What makes whiskers shake? Focus on "current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat" [J].
Brecht, M .
JOURNAL OF NEUROPHYSIOLOGY, 2004, 92 (03) :1265-1266
[7]   Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex [J].
Brecht, M ;
Schneider, M ;
Sakmann, B ;
Margrie, TW .
NATURE, 2004, 427 (6976) :704-710
[8]   Functional architecture of the mystacial vibrissae [J].
Brecht, M ;
Preilowski, B ;
Merzenich, MM .
BEHAVIOURAL BRAIN RESEARCH, 1997, 84 (1-2) :81-97
[9]   ELECTROMYOGRAPHIC ACTIVITY OF MYSTACIAL PAD MUSCULATURE DURING WHISKING BEHAVIOR IN THE RAT [J].
CARVELL, GE ;
SIMONS, DJ ;
LICHTENSTEIN, SH ;
BRYANT, P .
SOMATOSENSORY AND MOTOR RESEARCH, 1991, 8 (02) :159-164
[10]  
CARVELL GE, 1990, J NEUROSCI, V10, P2638