Perfectly Matched Layer as an Absorbing Boundary Condition for Computational Aero-acoustic

被引:0
作者
WeiChen [1 ]
SongpingWu [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
来源
ADVANCES IN ENVIRONMENTAL TECHNOLOGIES, PTS 1-6 | 2013年 / 726-731卷
关键词
PML boundary; CAA; DRP; Linearized Euler equations; Nonlinear Euler equations; LINEARIZED EULER EQUATIONS;
D O I
10.4028/www.scientific.net/AMR.726-731.3153
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Advances in Computational Aeroacoustics(CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the Perfectly Matched Layer(PML) for external boundaries in CAA. To achieve low dissipation and dispersion errors, Dispersion-Relation-Preserving(DRP) Schemes are used for spatial discretization of the acoustic equations. The classical fourth-order Runge-Kutta time scheme is applied to the acoustic equations for time discretization. Four cases are given to illustrate the 2D PML equations for the linearized/nonlinear Euler equations in Cartesian coordinates and Cylindrical coordinates. The results show that the PML is effective as absorbing boundary condition. Those are basis for PML in actual computations of acoustic problems.
引用
收藏
页码:3153 / 3158
页数:6
相关论文
共 9 条
  • [1] The aero-acoustic Galbrun equation in the time domain with perfectly matched layer boundary conditions
    Feng, Xue
    Ben Tahar, Mabrouk
    Baccouche, Ryan
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 139 (01) : 320 - 331
  • [2] An absorbing boundary condition for the lattice Boltzmann method based on the perfectly matched layer
    Najafi-Yazdi, A.
    Mongeau, L.
    COMPUTERS & FLUIDS, 2012, 68 : 203 - 218
  • [3] Perfectly matched layer absorbing boundary condition for nonlinear two-fluid plasma equations
    Sun, X. F.
    Jiang, Z. H.
    Hu, X. W.
    Zhuang, G.
    Jiang, J. F.
    Guo, W. X.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 286 : 128 - 142
  • [4] Absorbing boundary condition for nonlinear Euler equations in primitive variables based on the Perfectly Matched Layer technique
    Lin, D. K.
    Li, X. D.
    Hu, Fang Q.
    COMPUTERS & FLUIDS, 2011, 40 (01) : 333 - 337
  • [5] A PERFECTLY MATCHED LAYER ABSORBING BOUNDARY CONDITION AND WAVE-MAKER MODELING FOR WAVE PROPAGATION PROBLEMS IN INHOMOGENEOUS INFINITE-DOMAINS
    Tsutsui, Shigeaki
    COASTAL ENGINEERING JOURNAL, 2011, 53 (03): : 245 - 284
  • [6] Nonreflective Conditions for Perfectly Matched Layer in Computational Aeroacoustics
    Choung, Hanahchim
    Jang, Seokjong
    Lee, Soogab
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2018, 19 (02) : 279 - 290
  • [7] The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method
    Yang, Jubiao
    Yu, Feimi
    Krane, Michael
    Zhang, Lucy T.
    JOURNAL OF FLUIDS AND STRUCTURES, 2018, 76 : 135 - 152
  • [8] Perfectly matched layer boundary conditions for the second-order acoustic wave equation solved by the rapid expansion method
    Araujo, Edvaldo S.
    Pestana, Reynam C.
    GEOPHYSICAL PROSPECTING, 2020, 68 (02) : 572 - 590
  • [9] An Improved Unsplit and Convolutional Perfectly Matched Layer Absorbing Technique for the Navier-Stokes Equations Using Cut-Off Frequency Shift
    Martin, Roland
    Couder-Castaneda, Carlos
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 63 (01): : 47 - 78