Growth of nickel silicate nanoplates on reduced graphene oxide as layered nanocomposites for highly reversible lithium storage

被引:50
作者
Wang, Qian-Qian [1 ]
Qu, Jin [1 ]
Liu, Yuan [1 ]
Gui, Chen-Xi [1 ]
Hao, Shu-Meng [1 ]
Yu, Yunhua [1 ]
Yu, Zhong-Zhen [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
PERFORMANCE ANODE MATERIAL; ELECTROCHEMICAL PROPERTIES; CARBON NANOFIBERS; TIN-NANOPARTICLES; BATTERY; ADSORPTION; NANOSHEETS; COMPOSITE; CAPACITY; NANOSTRUCTURES;
D O I
10.1039/c5nr05719a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The combination of active materials with electrically conductive carbon materials and their contact efficiency are crucial for improving the electrochemical performances of active materials. Here, nickel silicate (NiSiOx) nanoplates are planted in situ on the surface of reduced graphene oxide (RGO) nanosheets to form a two dimensional face-to-face nanocomposite of NiSiOx/RGO for lithium storage. The face-to-face structure enhances the contact efficiency of NiSiOx with RGO, and thus leads to a higher reversible capacity and better rate performance of the NiSiOx/RGO nanocomposite than both carbon nanotube (CNT)@NiSiOx nanocables and NiSiOx. The layered NiSiOx/RGO nanocomposite exhibits a high reversible specific capacity of 797 mA h g(-1), which is 62% and 806% higher than those of CNT@NiSiOx nanocables and NiSiOx alone, respectively.
引用
收藏
页码:16805 / 16811
页数:7
相关论文
共 75 条
  • [31] Materials Challenges and Opportunities of Lithium Ion Batteries
    Manthiram, Arumugam
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (03): : 176 - 184
  • [32] Electric field effect in atomically thin carbon films
    Novoselov, KS
    Geim, AK
    Morozov, SV
    Jiang, D
    Zhang, Y
    Dubonos, SV
    Grigorieva, IV
    Firsov, AA
    [J]. SCIENCE, 2004, 306 (5696) : 666 - 669
  • [33] Chemical transformation and morphology change of nickel-silica hybrid nanostructures via nickel phyllosilicates
    Park, Ji Chan
    Lee, Hyun Ju
    Bang, Jung Up
    Park, Kang Hyun
    Song, Hyunjoon
    [J]. CHEMICAL COMMUNICATIONS, 2009, (47) : 7345 - 7347
  • [34] Park S, 2009, NAT NANOTECHNOL, V4, P217, DOI [10.1038/NNANO.2009.58, 10.1038/nnano.2009.58]
  • [35] A review on polymer-layered silicate nanocomposites
    Pavlidou, S.
    Papaspyrides, C. D.
    [J]. PROGRESS IN POLYMER SCIENCE, 2008, 33 (12) : 1119 - 1198
  • [36] Improving the Li-Ion Storage Performance of Layered Zinc Silicate through the Interlayer Carbon and Reduced Graphene Oxide Networks
    Qu, Jin
    Yan, Yang
    Yin, Ya-Xia
    Guo, Yu-Guo
    Song, Wei-Guo
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (12) : 5777 - 5782
  • [37] Layer Structured α-Fe2O3 Nanodisk/Reduced Graphene Oxide Composites as High-Performance Anode Materials for Lithium-Ion Batteries
    Qu, Jin
    Yin, Ya-Xia
    Wang, Yong-Qing
    Yan, Yang
    Guo, Yu-Guo
    Song, Wei-Guo
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (09) : 3932 - 3936
  • [38] Metal silicate nanotubes with nanostructured walls as superb adsorbents for uranyl ions and lead ions in water
    Qu, Jin
    Li, Wei
    Cao, Chang-Yan
    Yin, Xiao-Jie
    Zhao, Liang
    Bai, Jing
    Qin, Zhi
    Song, Wei-Guo
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (33) : 17222 - 17226
  • [39] Polymer/layered silicate nanocomposites: a review from preparation to processing
    Ray, SS
    Okamoto, M
    [J]. PROGRESS IN POLYMER SCIENCE, 2003, 28 (11) : 1539 - 1641
  • [40] New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties
    Ray, SS
    Maiti, P
    Okamoto, M
    Yamada, K
    Ueda, K
    [J]. MACROMOLECULES, 2002, 35 (08) : 3104 - 3110