Relaxing the Irrevocability Requirement for Online Graph Algorithms

被引:4
作者
Boyar, Joan [1 ]
Favrholdt, Lene M. [1 ]
Kotrbcik, Michal [2 ]
Larsen, Kim S. [1 ]
机构
[1] Univ Southern Denmark, Odense, Denmark
[2] Univ Queensland, Brisbane, Qld, Australia
来源
ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017 | 2017年 / 10389卷
关键词
SEMI-STREAMING MODEL; KNAPSACK-PROBLEMS;
D O I
10.1007/978-3-319-62127-2_19
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Online graph problems are considered in models where the irrevocability requirement is relaxed. Motivated by practical examples where, for example, there is a cost associated with building a facility and no extra cost associated with doing it later, we consider the Late Accept model, where a request can be accepted at a later point, but any acceptance is irrevocable. Similarly, we also consider a Late Reject model, where an accepted request can later be rejected, but any rejection is irrevocable (this is sometimes called preemption). Finally, we consider the Late Accept/Reject model, where late accepts and rejects are both allowed, but any late reject is irrevocable. For Independent Set, the Late Accept/Reject model is necessary to obtain a constant competitive ratio, but for Vertex Cover the Late Accept model is sufficient and for Minimum Spanning Forest the Late Reject model is sufficient. The Matching problem has a competitive ratio of 2, but in the Late Accept/Reject model, its competitive ratio is 3/2.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 26 条
  • [1] [Anonymous], 1983, CBMS-NSF Regional Conf. Ser. in Appl. Math.
  • [2] Bartal Y., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P531, DOI 10.1145/237814.238001
  • [3] Boyar J., 2017, ARXIV170408835
  • [4] Boyar J., 2016, LIPICS, V53
  • [5] Online Knapsack Revisited
    Cygan, Marek
    Jez, Lukasz
    Sgall, Jiri
    [J]. THEORY OF COMPUTING SYSTEMS, 2016, 58 (01) : 153 - 190
  • [6] On-line vertex-covering
    Demange, M
    Paschos, VT
    [J]. THEORETICAL COMPUTER SCIENCE, 2005, 332 (1-3) : 83 - 108
  • [7] Epstein L, 2013, 30 INT S THEOR ASP C, P389, DOI DOI 10.4230/LIPICS.STACS.2013.389
  • [8] IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING IN THE SEMI-STREAMING MODEL
    Epstein, Leah
    Levin, Asaf
    Mestre, Julian
    Segev, Danny
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (03) : 1251 - 1265
  • [9] On graph problems in a semi-streaming model
    Feigenbaum, J
    Kannan, S
    McGregor, A
    Suri, S
    Zhang, J
    [J]. THEORETICAL COMPUTER SCIENCE, 2005, 348 (2-3) : 207 - 216
  • [10] Efficient on-line call control algorithms
    Garay, JA
    Gopal, IS
    Kutten, S
    Mansour, Y
    Yung, M
    [J]. JOURNAL OF ALGORITHMS, 1997, 23 (01) : 180 - 194