Nonstationary time series analysis by temporal clustering

被引:26
作者
Policker, S [1 ]
Geva, AB [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Comp Engn, IL-84105 Beer Sheva, Israel
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS | 2000年 / 30卷 / 02期
基金
以色列科学基金会;
关键词
cluster validity; fuzzy clustering; temporal pattern recognition; time series analysis;
D O I
10.1109/3477.836381
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The object of this paper is to present a model and a set of algorithms for estimating the parameters of a nonstationary time series generated by a continuous change in regime. We apply fuzzy clustering methods to the task of estimating the continuous drift in the time series distribution and interpret the resulting temporal membership matrix as weights in a time varying, mixture probability distribution function (PDF). We analyze the stopping conditions of the algorithm to infer a novel cluster validity criterion for fuzzy clustering algorithms of temporal patterns. The algorithm performance is demonstrated with three different types of signals.
引用
收藏
页码:339 / 343
页数:5
相关论文
共 16 条
  • [1] [Anonymous], 2018, TIME SERIES PREDICTI
  • [2] [Anonymous], Pattern Recognition With Fuzzy Objective Function Algorithms
  • [3] Bezdek JC., 1992, FUZZY MODELS PATTERN
  • [4] Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
  • [5] DELLER JR, 1987, DISCRETE TIME PROCES
  • [6] Freund Y., 1995, Proceedings of the Eighth Annual Conference on Computational Learning Theory, P41, DOI 10.1145/225298.225303
  • [7] UNSUPERVISED OPTIMAL FUZZY CLUSTERING
    GATH, I
    GEVA, AB
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) : 773 - 781
  • [8] HAMILTON D, 1994, TIME SERIES ANAL, P677
  • [9] Jain K., 1988, ALGORITHMS CLUSTERIN
  • [10] KOHLMORGEN J, NNSP 97, P326