On a combinatorial curvature for surfaces with inversive distance circle packing metrics

被引:19
作者
Ge, Huabin [1 ]
Xu, Xu [2 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Inversive distance; Circle packing; Combinatorial Gauss curvature; Combinatorial curvature flow; RICCI FLOW; RIGIDITY;
D O I
10.1016/j.jfa.2018.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new combinatorial curvature on triangulated surfaces with inversive distance circle packing metrics. Then we prove that this combinatorial curvature has global rigidity. To study the Yamabe problem of the new curvature, we introduce a combinatorial Ricci flow, along which the curvature evolves almost in the same way as that of scalar curvature along the surface Ricci flow obtained by Hamilton [20]. Then we study the long time behavior of the combinatorial Ricci flow and obtain that the existence of a constant curvature metric is equivalent to the convergence of the flow on triangulated surfaces with nonpositive Euler number. We further generalize the combinatorial curvature to alpha-curvature and prove that it is also globally rigid, which is in fact a generalized Bowers-Stephenson conjecture [6]. We also use the combinatorial Ricci flow to study the corresponding alpha-Yamabe problem. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:523 / 558
页数:36
相关论文
共 32 条
[1]  
Andreev, 1970, MAT SBORNIK, V81, P445
[2]  
Andreev E. M., 1970, MAT SBORNIK, V83, P256
[3]   Discrete conformal maps and ideal hyperbolic polyhedra [J].
Bobenko, Alexander I. ;
Pinkall, Ulrich ;
Springborn, Boris A. .
GEOMETRY & TOPOLOGY, 2015, 19 (04) :2155-2215
[4]  
Bowers J.C., ARXIV160700453MATHDG
[5]  
Bowers P. L., 2003, MATH VIS, P3
[6]  
Bowers PL, 2004, MEM AM MATH SOC, V170, P1
[7]  
Chow B, 2003, J DIFFER GEOM, V63, P97
[8]  
Coxeter H. S. M., 1966, ANN MAT PUR APPL, V71, P73, DOI DOI 10.1007/BF02413734
[9]  
Ge H., ARXIV150405814V2MATH
[10]  
Ge H., ARXIV160408317MATHGT