Bayesian inference in partially identified models: Is the shape of the posterior distribution useful?

被引:8
|
作者
Gustafson, Paul [1 ]
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V5Z 1M9, Canada
来源
ELECTRONIC JOURNAL OF STATISTICS | 2014年 / 8卷
基金
加拿大自然科学与工程研究理事会;
关键词
Bayesian inference; partial identification; posterior distribution; PARAMETERS; INFORMATION; PREVALENCE; INTERVALS; ABSENCE; BIAS;
D O I
10.1214/14-EJS891
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Partially identified models are characterized by the distribution of observables being compatible with a set of values for the target parameter, rather than a single value. This set is often referred to as an identification;region. Prom a non-Bayesian point of view, the identification region is the object revealed to the investigator in the limit of increasing sample size. Conversely, a Bayesian analysis provides the identification region plus the limit big posterior distribution over this region. This purports to convey varying plausibility of values across the region. Taking a decision-theoretic view, we investigate the extent to which having a distribution across the identification region is indeed helpful.
引用
收藏
页码:476 / 496
页数:21
相关论文
共 50 条
  • [31] Differential Privacy for Bayesian Inference through Posterior Sampling
    Dimitrakakis, Christos
    Nelson, Blaine
    Zhang, Zuhe
    Mitrokotsa, Aikaterini
    Rubinstein, Benjamin I. P.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [32] Application of Bayesian posterior probabilistic inference in educational trials
    Uwimpuhwe, Germaine
    Singh, Akansha
    Higgins, Steve
    Kasim, Adetayo
    INTERNATIONAL JOURNAL OF RESEARCH & METHOD IN EDUCATION, 2021, 44 (05) : 533 - 554
  • [33] Bayesian inference for double SARMA models
    Amin, Ayman A.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (21) : 5333 - 5345
  • [34] Exact Bayesian inference for the Bingham distribution
    Christopher J. Fallaize
    Theodore Kypraios
    Statistics and Computing, 2016, 26 : 349 - 360
  • [35] Exact Bayesian inference for the Bingham distribution
    Fallaize, Christopher J.
    Kypraios, Theodore
    STATISTICS AND COMPUTING, 2016, 26 (1-2) : 349 - 360
  • [36] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734
  • [37] Bayesian Inference in Nonparanormal Graphical Models
    Mulgrave, Jami J.
    Ghosal, Subhashis
    BAYESIAN ANALYSIS, 2020, 15 (02): : 449 - 475
  • [38] Bayesian conditional inference for Rasch models
    Clemens Draxler
    AStA Advances in Statistical Analysis, 2018, 102 : 245 - 262
  • [39] Bayesian conditional inference for Rasch models
    Draxler, Clemens
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2018, 102 (02) : 245 - 262
  • [40] A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation
    Kypraios, Theodore
    Neal, Peter
    Prangle, Dennis
    MATHEMATICAL BIOSCIENCES, 2017, 287 : 42 - 53