A theoretical study of the mechanism for the biogenesis of cofactor topaquinone in copper amine oxidases

被引:22
作者
Prabhakar, R [1 ]
Siegbahn, PEM [1 ]
机构
[1] Univ Stockholm, Stockholm Ctr Phys Astron & Biotechnol, Dept Phys, S-10691 Stockholm, Sweden
关键词
D O I
10.1021/ja034721k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the present quantum chemical study, the biogenesis of the cofactor topaquinone (TPQ) has been studied using hybrid density functional theory (B3LYP). The suggested mechanism is divided into six steps and incorporates the observation of four crystallized intermediates. The experimental suggestion that the formation of the Cu(II)-peroxy species is the rate-limiting step is consistent with the results of the present study. Before the formation of the Cu(II)-peroxy species, dioxygen is suggested to first bind at the equatorial position on the copper metal center. A mechanism for the critical O-O bond cleavage is suggested, and this step is found to be driven by an unusually large exothermicity. A complex, spin-forbidden formation of H2O2 with and without the involvement of the copper metal center is discussed. The results are discussed in detail, and comparisons are made to experimental findings and suggestions.
引用
收藏
页码:3996 / 4006
页数:11
相关论文
共 74 条
[1]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[4]   Modeling electron transfer in biochemistry:: A quantum chemical study of charge separation in Rhodobacter sphaeroides and photosystem II [J].
Blomberg, MRA ;
Siegbahn, PEM ;
Babcock, GT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (34) :8812-8824
[5]   A quantum chemical approach to the study of reaction mechanisms of redox-active metalloenzymes [J].
Blomberg, MRA ;
Siegbahn, PEM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (39) :9375-9386
[6]  
Bono P, 1998, J IMMUNOL, V160, P5563
[7]   Plasma semicarbazide-sensitive amine oxidase is elevated in patients with congestive heart failure [J].
Boomsma, F ;
vanVeldhuisen, DJ ;
deKam, PJ ;
ManintVeld, AJ ;
Mosterd, A ;
Lie, KI ;
Schalekamp, MADH .
CARDIOVASCULAR RESEARCH, 1997, 33 (02) :387-391
[8]   CLONING AND SEQUENCING OF THE PEROXISOMAL AMINE OXIDASE GENE FROM HANSENULA-POLYMORPHA [J].
BRUINENBERG, PG ;
EVERS, M ;
WATERHAM, HR ;
KUIPERS, J ;
ARNBERG, AC ;
AB, G .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 1008 (02) :157-167
[9]   COPPER AMINE OXIDASE - HETEROLOGOUS EXPRESSION, PURIFICATION, AND CHARACTERIZATION OF AN ACTIVE ENZYME IN SACCHAROMYCES-CEREVISIAE [J].
CAI, DY ;
KLINMAN, JP .
BIOCHEMISTRY, 1994, 33 (24) :7647-7653
[10]   Effect of metal on 2,4,5-trihydroxyphenylalanine (Topa) quinone biogenesis in the Hansenula polymorpha copper amine oxidase [J].
Cai, DY ;
Williams, NK ;
Klinman, JP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (31) :19277-19281