Exact wave front solutions to two generalized coupled nonlinear physical equations

被引:24
作者
Feng, X
机构
[1] Lab. Numer. Stud. Heliospheric Phys., Beijing 100080
关键词
nonlinear partial differential equations; high nonlinearity; coupled physical model; wave front-like solution; specific ansatz; analytical solutions;
D O I
10.1016/0375-9601(96)00102-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find the analytical wave front solutions to two coupled physical models by presenting various ansatze for the two unknowns in the equations of interest.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 14 条
[1]   TRAVELING WAVE SOLUTIONS FOR A GENERALIZED FISHER EQUATION [J].
ABDELKADER, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 85 (02) :287-290
[2]  
Drazin P.G., 1989, SOLITONS INTRO
[3]   OSCILLATIONS IN CHEMICAL SYSTEMS .2. THOROUGH ANALYSIS OF TEMPORAL OSCILLATION IN BROMATE-CERIUM-MALONIC ACID SYSTEM [J].
FIELD, RJ ;
NOYES, RM ;
KOROS, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1972, 94 (25) :8649-&
[4]   N-SOLITON SOLUTIONS OF A SYSTEM OF COUPLED KDV EQUATIONS [J].
LU, BQ .
PHYSICS LETTERS A, 1994, 189 (1-2) :25-26
[5]  
MANORANIAN VS, 1980, J DIFF EQS, V36, P89
[6]  
Murray J.D, 1989, Mathematical Biology, V19
[7]   TRAVELING WAVE SOLUTIONS IN A MODEL FOR BELOUSOV-ZHABOTINSKII REACTION [J].
MURRAY, JD .
JOURNAL OF THEORETICAL BIOLOGY, 1976, 56 (02) :329-353
[8]  
Sachdev P L, 1987, NONLINEAR DIFFUSIVE
[9]   THE EXISTENCE OF TRAVELING WAVE-FRONT SOLUTIONS OF A MODEL OF THE BELOUSOV-ZHABOTINSKII CHEMICAL-REACTION [J].
TROY, WC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 36 (01) :89-98
[10]  
TYSON JJ, 1976, BELOUSOV ZHABOTINSKI, V10