Stability of minimizers of set optimization problems

被引:13
作者
Gaydu, Michael [1 ]
Geoffroy, Michel H. [1 ]
Jean-Alexis, Celia [1 ]
Nedelcheva, Diana [2 ]
机构
[1] Univ Antilles Guyane, Dept Math, LAMIA, Pointe a Pitre, Guadeloupe, France
[2] Tech Univ, Dept Math, Varna, Bulgaria
关键词
Variational convergence; Gamma-convergence; Relative minimizer; Vector optimization; Set-valued optimization;
D O I
10.1007/s11117-016-0412-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior of sequences of minimization problems in set optimization. More precisely, considering a sequence of set optimization problems converging in some sense to a set optimization problem (P) we investigate the upper and lower convergences of the sets of minimizers of the problems to the set of minimizers of the problem (P).
引用
收藏
页码:127 / 141
页数:15
相关论文
共 33 条
[1]  
[Anonymous], 1990, SYSTEMS CONTROL FDN
[2]  
[Anonymous], 1998, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 1992, J GLOBAL OPTIM, DOI DOI 10.1007/BF00122049
[4]  
Bao TQ, 2010, ADV MATH ECON, V13, P113, DOI 10.1007/978-4-431-99490-9_5
[5]   Relative Pareto minimizers for multiobjective problems: existence and optimality conditions [J].
Bao, Truong Q. ;
Mordukhovich, Boris S. .
MATHEMATICAL PROGRAMMING, 2010, 122 (02) :301-347
[6]   Necessary conditions for super minimizers in constrained multiobjective optimization [J].
Bao, Truong Q. ;
Mordukhovich, Boris S. .
JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (04) :533-552
[7]  
Beer G., 1993, mathematics and its applications, V268, P340
[8]   SUPER EFFICIENCY IN VECTOR OPTIMIZATION [J].
BORWEIN, JM ;
ZHUANG, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :105-122
[9]   PARTIALLY FINITE CONVEX-PROGRAMMING .1. QUASI RELATIVE INTERIORS AND DUALITY-THEORY [J].
BORWEIN, JM ;
LEWIS, AS .
MATHEMATICAL PROGRAMMING, 1992, 57 (01) :15-48
[10]  
Borwein JM., 2003, J Math Sci, V115, P2542, DOI [DOI 10.1023/A:1022988116044, 10.1023/A:1022988116044]