Asymptotic Stability for the 2D Navier-Stokes Equations with Multidelays on Lipschitz Domain

被引:0
|
作者
Zhang, Ling-Rui [1 ]
Yang, Xin-Guang [1 ]
Su, Ke-Qin [2 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450046, Peoples R China
关键词
Navier-Stokes equations; multidelays; Lipschitz domain; PULLBACK ATTRACTORS;
D O I
10.3390/math10234561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the asymptotic stability derived for the two-dimensional incompressible Navier-Stokes equations with multidelays on Lipschitz domain, which models the control theory of 2D fluid flow. By a new retarded Gronwall inequality and estimates of stream function for Stokes equations, the complete trajectories inside pullback attractors are asymptotically stable via the restriction on the generalized Grashof number of fluid flow. The results in this presented paper are some extension of the literature by Yang, Wang, Yan and Miranville in 2021, as well as also the preprint by Su, Yang, Miranville and Yang in 2022
引用
收藏
页数:12
相关论文
共 50 条
  • [1] DETERMINATION FOR THE 2D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN LIPSCHITZ DOMAIN
    Yang, Xin-Guang
    Hu, Meng
    Ma, To Fu
    Yuan, Jinyun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (08) : 2301 - 2328
  • [2] Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain
    Temam, R
    Wang, XM
    ASYMPTOTIC ANALYSIS, 1997, 14 (04) : 293 - 321
  • [3] Asymptotic stability for the Navier-Stokes equations
    Fan, Jishan
    Ozawa, Tohru
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (02) : 379 - 389
  • [4] Asymptotic stability for the Navier-Stokes equations
    Jishan Fan
    Tohru Ozawa
    Journal of Evolution Equations, 2008, 8 : 379 - 389
  • [5] Asymptotic stability for the 3D Navier-Stokes equations
    Zhou, Y
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) : 323 - 333
  • [6] DYNAMICS OF THE 2D NAVIER-STOKES EQUATIONS WITH SUBLINEAR OPERATORS IN LIPSCHITZ-LIKE DOMAINS
    Yang, Xin-Guang
    Wang, Rong-Nian
    Yan, Xingjie
    Miranville, Alain
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (07) : 3343 - 3366
  • [7] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (04): : 473 - 517
  • [8] Dynamics and robustness for the 2D Navier-Stokes equations with multi-delays in Lipschitz-like domains
    Su, Keqin
    Yang, Xin-Guang
    Miranville, Alain
    Yang, He
    ASYMPTOTIC ANALYSIS, 2023, 134 (03) : 513 - 552
  • [9] On the asymptotic behaviour of the 2D Navier-Stokes equations with Navier friction conditions towards Euler equations
    Guillen-Gonzalez, Francisco
    Planas, Gabriela
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (10): : 810 - 822
  • [10] Hyperbolic relaxation of the 2D Navier-Stokes equations in a bounded domain
    Ilyin, Alexei
    Rykov, Yuri
    Zelik, Sergey
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 171 - 179