Approximating the Cumulant Generating Function of Triangles in the Erdos-Renyi Random Graph

被引:6
|
作者
Giardina, Cristian [1 ]
Giberti, Claudio [2 ]
Magnanini, Elena [1 ,3 ]
机构
[1] Univ Modena & Reggio Emilia, Via G Campi 213-B, I-41125 Modena, Italy
[2] Univ Modena & Reggio Emilia, Via G Amendola 2, I-42122 Reggio Emilia, Italy
[3] Univ Padua, Via Trieste 63, I-35121 Padua, Italy
关键词
Erdos-Renyi random graph; Edge-triangle model; Rare events simulations; Phase transition; Graphs limits; Ensemble equivalence;
D O I
10.1007/s10955-021-02707-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the pressure of the "edge-triangle model", which is equivalent to the cumulant generating function of triangles in the Erdos-Renyi random graph. The investigation involves a population dynamics method on finite graphs of increasing volume, as well as a discretization of the graphon variational problem arising in the infinite volume limit. As a result, we locate a curve in the parameter space where a one-step replica symmetry breaking transition occurs. Sampling a large graph in the broken symmetry phase is well described by a graphon with a structure very close to the one of an equi-bipartite graph.
引用
收藏
页数:22
相关论文
共 7 条
  • [1] Approximating the Cumulant Generating Function of Triangles in the Erdös–Rényi Random Graph
    Cristian Giardinà
    Claudio Giberti
    Elena Magnanini
    Journal of Statistical Physics, 2021, 182
  • [2] Large Deviations for Subcritical Bootstrap Percolation on the Erdos-Renyi Graph
    Angel, Omer
    Kolesnik, Brett
    JOURNAL OF STATISTICAL PHYSICS, 2021, 185 (02)
  • [3] COMPONENT SIZES FOR LARGE QUANTUM ERDOS-RENYI GRAPH NEAR CRITICALITY
    Dembo, Amir
    Levit, Anna
    Vadlamani, Sreekar
    ANNALS OF PROBABILITY, 2019, 47 (02): : 1185 - 1219
  • [4] Phase Transition in Inhomogenous Erdos-Renyi Random Graphs via Tree Counting
    Ganesan, Ghurumuruhan
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2018, 80 (01): : 1 - 27
  • [5] A large-deviations principle for all the cluster sizes of a sparse Erdos-Renyi graph
    Andreis, Luisa
    Koenig, Wolfgang
    Patterson, Robert I. A.
    RANDOM STRUCTURES & ALGORITHMS, 2021, 59 (04) : 522 - 553
  • [6] Coherence Resonance in Random Erdos-Renyi Neural Networks: Mean-Field Theory
    Hutt, A.
    Wahl, T.
    Voges, N.
    Hausmann, Jo
    Lefebvre, J.
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2021, 7
  • [7] Erdos-Renyi random graphs plus forest fires = self-organized criticality
    Rath, Balazs
    Toth, Balint
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 1290 - 1327