Assessment of all-solid-state lithium-ion batteries

被引:57
作者
Braun, P. [1 ]
Uhlmann, C. [1 ]
Weiss, M. [1 ]
Weber, A. [1 ]
Ivers-Tiffee, E. [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat IAM WET, D-76131 Karlsruhe, Germany
关键词
All-solid-state battery; Composite electrodes; Transmission line model; Ragone-diagram; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; POROUS-ELECTRODES; ELECTROLYTES; SIMULATION; CONDUCTORS; PARTICLES; DIFFUSION; INSERTION; GRAPHITE; MODELS;
D O I
10.1016/j.jpowsour.2018.04.111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solid-state lithium-ion batteries (ASSBs) are considered as next generation energy storage systems. A model might be very useful, which describes all contributions to the internal cell resistance, enables an optimization of the cell design, and calculates the performance of an open choice of cell architectures. A newly developed one-dimensional model for ASSBs is presented, based on a design concept which employs the use of composite electrodes. The internal cell resistance is calculated by linking two-phase transmission line models representing the composite electrodes with an ohmic resistance representing the solid electrolyte (separator). Thereby, electrical parameters, i.e. ionic and electronic conductivity, electrochemical parameters, i.e. charge-transfer resistance at interfaces and lithium solid-state diffusion, and microstructure parameters, i.e. electrode thickness, particle size, interface area, phase composition and tortuosity, are considered as the most important material and design parameters. Subsequently, discharge curves are simulated, and energy- and power-density characteristics of all-solid-state cell architectures are calculated. These model calculations are discussed and compared with experimental data from literature for a high power LiCoO2-Li10GeP2S12/Li10GeP2S12/Li4Ti5O12-Li10GeP2S12 cell.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 35 条
[1]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[2]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[3]   Anomalous transport effects in the impedance of porous film electrodes [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Fabregat-Santiago, F ;
Compte, A .
ELECTROCHEMISTRY COMMUNICATIONS, 1999, 1 (09) :429-435
[4]   Modeling All-Solid-State Li-Ion Batteries [J].
Danilov, D. ;
Niessen, R. A. H. ;
Notten, P. H. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A215-A222
[5]   Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods [J].
Dokko, K ;
Mohamedi, M ;
Fujita, Y ;
Itoh, T ;
Nishizawa, M ;
Umeda, M ;
Uchida, I .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (05) :A422-A426
[6]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[7]  
Ender M., J ELECTROCHEM SOC, V159
[8]  
Ender M., 2014, MIKROSTRUKTURELLE CH
[9]   Anode microstructures from high-energy and high-power lithium-ion cylindrical cells obtained by X-ray nano-tomography [J].
Ender, Moses ;
Joos, Jochen ;
Weber, Andre ;
Ivers-Tiffee, Ellen .
JOURNAL OF POWER SOURCES, 2014, 269 :912-919
[10]   A novel method for measuring the effective conductivity and the contact resistance of porous electrodes for lithium-ion batteries [J].
Ender, Moses ;
Weber, Andre ;
Ivers-Tiffee, Ellen .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 :130-133