Steiner triple systems with disjoint or intersecting subsystems

被引:0
|
作者
Colbourn, CJ
Oravas, MA
Rees, RS
机构
[1] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[3] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
关键词
Steiner triple system; incomplete pairwise balanced design;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of incomplete Steiner triple systems of order v having holes of orders w and u meeting in z elements is examined, with emphasis on the disjoint (z = 0) and intersecting (z = 1) cases. When w greater than or equal to u and v = 2w + u - 2z, the elementary necessary conditions are shown to be sufficient for all values of z. Then for z is an element of (0, 1) and v "near" the minimum of 2w + u - 2z, the conditions are again shown to he sufficient. Consequences for larger orders are also discussed, in particular the proof that when one hole is at least three times as large as the other, the conditions are again sufficient. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:58 / 77
页数:20
相关论文
共 50 条
  • [41] Egalitarian Steiner triple systems for data popularity
    Charles J. Colbourn
    Designs, Codes and Cryptography, 2021, 89 : 2373 - 2395
  • [42] Watermark design based on Steiner triple systems
    Zhi-Fang Yang
    Shyh-Shin Chiou
    Jun-Ting Lee
    Multimedia Tools and Applications, 2014, 72 : 2177 - 2194
  • [43] FROM STEINER TRIPLE SYSTEMS TO 3-SUN SYSTEMS
    Fu, Chin-Mei
    Jhuang, Nan-Hua
    Lin, Yuan-Lung
    Sung, Hsiao-Ming
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 531 - 543
  • [45] Steiner triple systems and spreading sets in projective spaces
    Nagy, Zoltan Lorant
    Szemeredi, Levente
    JOURNAL OF COMBINATORIAL DESIGNS, 2022, 30 (08) : 549 - 560
  • [46] On the upper embedding of Steiner triple systems and Latin squares
    Griggs, Terry S.
    McCourt, Thomas A.
    Siran, Jozef
    ARS MATHEMATICA CONTEMPORANEA, 2020, 18 (01) : 127 - 135
  • [47] On the number of small Steiner triple systems with Veblen points
    Filippone, Giuseppe
    Galici, Mario
    DISCRETE MATHEMATICS, 2025, 348 (01)
  • [48] On the maximum double independence number of Steiner triple systems
    Lusi, Dylan
    Colbourn, Charles J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (10) : 713 - 723
  • [49] Uniquely 3-colourable Steiner triple systems
    Forbes, AD
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 101 (01) : 49 - 68
  • [50] EMBEDDING PARTIAL STEINER TRIPLE SYSTEMS WITH FEW TRIPLES
    Horsley, Daniel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1199 - 1213