Steiner triple systems with disjoint or intersecting subsystems

被引:0
|
作者
Colbourn, CJ
Oravas, MA
Rees, RS
机构
[1] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[3] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
关键词
Steiner triple system; incomplete pairwise balanced design;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of incomplete Steiner triple systems of order v having holes of orders w and u meeting in z elements is examined, with emphasis on the disjoint (z = 0) and intersecting (z = 1) cases. When w greater than or equal to u and v = 2w + u - 2z, the elementary necessary conditions are shown to be sufficient for all values of z. Then for z is an element of (0, 1) and v "near" the minimum of 2w + u - 2z, the conditions are again shown to he sufficient. Consequences for larger orders are also discussed, in particular the proof that when one hole is at least three times as large as the other, the conditions are again sufficient. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:58 / 77
页数:20
相关论文
共 50 条
  • [11] Enumerating Steiner triple systems
    Heinlein, Daniel
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (10) : 479 - 495
  • [12] On colourings of Steiner triple systems
    Forbes, AD
    Grannell, MJ
    Griggs, TS
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 255 - 276
  • [13] Quasi-embeddings of Steiner triple systems, or Steiner triple systems of different orders with maximum intersection
    Dukes, P
    Mendelsohn, E
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (02) : 120 - 138
  • [14] Subcubic trades in Steiner triple systems
    Cavenagh, Nicholas J.
    Griggs, Terry S.
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1351 - 1358
  • [15] Nonorientable biembeddings of Steiner triple systems
    Grannell, MJ
    Korzhik, VP
    DISCRETE MATHEMATICS, 2004, 285 (1-3) : 121 - 126
  • [16] On the Block Coloring of Steiner Triple Systems
    Manaviyat, R.
    JOURNAL OF MATHEMATICAL EXTENSION, 2014, 8 (03) : 71 - 77
  • [17] Representing Graphs in Steiner Triple Systems
    Dan Archdeacon
    Terry Griggs
    Costas Psomas
    Graphs and Combinatorics, 2014, 30 : 255 - 266
  • [18] Independent sets in Steiner triple systems
    Forbes, AD
    Grannell, MJ
    Griggs, TS
    ARS COMBINATORIA, 2004, 72 : 161 - 169
  • [19] Representing Graphs in Steiner Triple Systems
    Archdeacon, Dan
    Griggs, Terry
    Psomas, Costas
    GRAPHS AND COMBINATORICS, 2014, 30 (02) : 255 - 266
  • [20] The Steiner triple systems of order 19
    Kaski, P
    Östergård, PRJ
    MATHEMATICS OF COMPUTATION, 2004, 73 (248) : 2075 - 2092