High performance lithium niobate surface acoustic wave transducers in the 4-12 GHz super high frequency range

被引:19
作者
Chen, Xiao [1 ,2 ]
Mohammad, Mohammad Ali [1 ,2 ]
Conway, James [3 ]
Liu, Bo [1 ,2 ]
Yang, Yi [1 ,2 ]
Ren, Tian-Ling [1 ,2 ]
机构
[1] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China
[2] Tsinghua Univ, TNList, Beijing 100084, Peoples R China
[3] Stanford Univ, SNF, Stanford, CA 94305 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2015年 / 33卷 / 06期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 中国博士后科学基金;
关键词
SAW; PROPAGATION; MODULATION; DEVICES;
D O I
10.1116/1.4935561
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Surface acoustic wave (SAW) transducers are a well-established component used in numerous sensors, communications, and electronics devices. In this work, the authors report a systematic study of 320-800 nm period lithium niobate SAW interdigitated transducers (IDTs) corresponding to resonant frequencies in the 4-12 GHz range. An optimized SAW design and a nanofabrication process flow were developed, which enabled superior device performance in terms of frequency, signal losses, and electromagnetic coupling. The influence of the device alignment on the substrate crystal planes, in addition to the IDT period and electrode design, is found to have a significant impact on various process metrics. As an example, two identical SAW transducers fabricated perpendicular to each other may have a resonant frequency difference approaching 1 GHz, for the same harmonic mode. These and other trends are presented and discussed. (C) 2015 American Vacuum Society.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
[Anonymous], THESIS
[2]   Ultrahigh-frequency surface acoustic wave transducers on ZnO/SiO2/Si using nanoimprint lithography [J].
Buyukkose, S. ;
Vratzov, B. ;
Atac, D. ;
van der Veen, J. ;
Santos, P. V. ;
van der Wiel, W. G. .
NANOTECHNOLOGY, 2012, 23 (31)
[3]   A third-order mode high frequency biosensor with atomic resolution [J].
Cai, Hua-Lin ;
Yang, Yi ;
Chen, Xiao ;
Ali Mohammad, Mohammad ;
Ye, Tian-Xiang ;
Guo, Cang-Ran ;
Yi, Li-Ting ;
Zhou, Chang-Jian ;
Liu, Jing ;
Ren, Tian-Ling .
BIOSENSORS & BIOELECTRONICS, 2015, 71 :261-268
[4]  
Campbell C., 1998, Surface Acoustic Wave Devices for Mobile and Wireless Communications
[5]  
ChangJian Z., 2012, THESIS
[6]   Fabrication of a GHz band surface acoustic wave filter by UV-nanoimprint with an HSQ stamp [J].
Chen, Nian-Huei ;
Huang, Ju-Chun ;
Wang, Chiu-Yen ;
Huang, Fon-Shan .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (04)
[7]  
Ciplys D., 1999, ULTRAGARSAS ULTRASOU, V33, P14
[8]   Surface acoustic wave microfluidics [J].
Ding, Xiaoyun ;
Li, Peng ;
Lin, Sz-Chin Steven ;
Stratton, Zackary S. ;
Nama, Nitesh ;
Guo, Feng ;
Slotcavage, Daniel ;
Mao, Xiaole ;
Shi, Jinjie ;
Costanzo, Francesco ;
Huang, Tony Jun .
LAB ON A CHIP, 2013, 13 (18) :3626-3649
[9]   Super-High-Frequency SAW Transducer Utilizing AlN/Ultrananocrystalline Diamond Architectures [J].
Dow, Ali Badar Alamin ;
Popov, Cyril ;
Schmid, Ulrich ;
Kherani, Nazir P. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2013, 60 (08) :1581-1586
[10]  
Fuhrmann DA, 2011, NAT PHOTONICS, V5, P605, DOI [10.1038/NPHOTON.2011.208, 10.1038/nphoton.2011.208]