Harmonic cochains and K-theory for (A) Over tilde2-groups

被引:0
作者
Robertson, Guyan [1 ]
机构
[1] Univ Newcastle, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
Euclidean building; boundary; operator algebra; AFFINE BUILDINGS; BOUNDARY; COHOMOLOGY; ALGEBRAS;
D O I
10.4171/GGD/224
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If Gamma is a torsion free (A) Over tilde(2)- group acting on an (A) Over tilde(2) building Delta, and U-Gamma is the associated boundary C*-algebra, it is proved that K-0(U-Gamma) circle times R congruent to R-2 beta 2, where. beta(2) = dim(R) H-2(Gamma, R).
引用
收藏
页码:245 / 255
页数:11
相关论文
共 12 条
[1]   Cohomology of discrete groups in harmonic cochains on buildings [J].
Alon, G ;
De Shalit, E .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 135 (1) :355-380
[2]  
Bekka B., 2008, NEW MATH MONOGRAPHS, V11
[3]   GROUPS ACTING SIMPLY TRANSITIVELY ON THE VERTICES OF A BUILDING OF TYPE-(A)OVER-TILDE(2) .1. [J].
CARTWRIGHT, DI ;
MANTERO, AM ;
STEGER, T ;
ZAPPA, A .
GEOMETRIAE DEDICATA, 1993, 47 (02) :143-166
[4]   Introduction to l2-methods in topology:: Reduced l2-homology, harmonic chains, l2-Betti numbers [J].
Eckmann, B .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 117 (1) :183-219
[5]   P-ADIC CURVATURE AND COHOMOLOGY OF DISCRETE SUBGROUPS OF P-ADIC GROUPS [J].
GARLAND, H .
ANNALS OF MATHEMATICS, 1973, 97 (03) :375-423
[6]  
Garrett P., 1997, BUILDINGS CLASSICAL
[7]  
Robertson G, 2005, HOUSTON J MATH, V31, P913
[8]   Torsion in boundary coinvariants and K-theory for affine buildings [J].
Robertson, G .
K-THEORY, 2004, 33 (04) :347-369
[9]   Asymptotic K-theory for groups acting on (A)over-tilde2 buildings [J].
Robertson, G ;
Steger, T .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (04) :809-833
[10]   Torsion in K-theory for boundary actions on affine buildings of type (A)over-tilden [J].
Robertson, G .
K-THEORY, 2001, 22 (03) :251-269