The Power to Detect Quantitative Trait Loci Using Resequenced, Experimentally Evolved Populations of Diploid, Sexual Organisms

被引:67
作者
Baldwin-Brown, James G. [1 ]
Long, Anthony D. [1 ]
Thornton, Kevin R. [1 ]
机构
[1] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92717 USA
基金
美国国家卫生研究院;
关键词
simulation; QTL detection; genomics; adaptive evolution; experimental evolution; evolve and resequence; EVOLUTION; ADAPTATION; DROSOPHILA; SELECTION; SIMULATION; GENETICS;
D O I
10.1093/molbev/msu048
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A novel approach for dissecting complex traits is to experimentally evolve laboratory populations under a controlled environment shift, resequence the resulting populations, and identify single nucleotide polymorphisms (SNPs) and/or genomic regions highly diverged in allele frequency. To better understand the power and localization ability of such an evolve and resequence (E&R) approach, we carried out forward-in-time population genetics simulations of 1 Mb genomic regions under a large combination of experimental conditions, then attempted to detect significantly diverged SNPs. Our analysis indicates that the ability to detect differentiation between populations is primarily affected by selection coefficient, population size, number of replicate populations, and number of founding haplotypes. We estimate that E&R studies can detect and localize causative sites with 80% success or greater when the number of founder haplotypes is over 500, experimental populations are replicated at least 25-fold, population size is at least 1,000 diploid individuals, and the selection coefficient on the locus of interest is at least 0.1. More achievable experimental designs (less replicated, fewer founder haplotypes, smaller effective population size, and smaller selection coefficients) can have power of greater than 50% to identify a handful of SNPs of which one is likely causative. Similarly, in cases where s >= 0.2, less demanding experimental designs can yield high power.
引用
收藏
页码:1040 / 1055
页数:16
相关论文
共 41 条
[1]   Rapid forward-in-time simulation at the chromosome and genome level [J].
Aberer, Andre J. ;
Stamatakis, Alexandros .
BMC BIOINFORMATICS, 2013, 14
[2]   Genetic analysis of complex traits in the emerging Collaborative Cross [J].
Aylor, David L. ;
Valdar, William ;
Foulds-Mathes, Wendy ;
Buus, Ryan J. ;
Verdugo, Ricardo A. ;
Baric, Ralph S. ;
Ferris, Martin T. ;
Frelinger, Jeff A. ;
Heise, Mark ;
Frieman, Matt B. ;
Gralinski, Lisa E. ;
Bell, Timothy A. ;
Didion, John D. ;
Hua, Kunjie ;
Nehrenberg, Derrick L. ;
Powell, Christine L. ;
Steigerwalt, Jill ;
Xie, Yuying ;
Kelada, Samir N. P. ;
Collins, Francis S. ;
Yang, Ivana V. ;
Schwartz, David A. ;
Branstetter, Lisa A. ;
Chesler, Elissa J. ;
Miller, Darla R. ;
Spence, Jason ;
Liu, Eric Yi ;
McMillan, Leonard ;
Sarkar, Abhishek ;
Wang, Jeremy ;
Wang, Wei ;
Zhang, Qi ;
Broman, Karl W. ;
Korstanje, Ron ;
Durrant, Caroline ;
Mott, Richard ;
Iraqi, Fuad A. ;
Pomp, Daniel ;
Threadgill, David ;
de Villena, Fernando Pardo-Manuel ;
Churchill, Gary A. .
GENOME RESEARCH, 2011, 21 (08) :1213-1222
[3]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[4]   Genome evolution and adaptation in a long-term experiment with Escherichia coli [J].
Barrick, Jeffrey E. ;
Yu, Dong Su ;
Yoon, Sung Ho ;
Jeong, Haeyoung ;
Oh, Tae Kwang ;
Schneider, Dominique ;
Lenski, Richard E. ;
Kim, Jihyun F. .
NATURE, 2009, 461 (7268) :1243-U74
[5]   Understanding quantitative genetic variation [J].
Barton, NH ;
Keightley, PD .
NATURE REVIEWS GENETICS, 2002, 3 (01) :11-21
[6]  
BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.ge.23.120189.002005
[7]   What paths do advantageous alleles take during short-term evolutionary change? [J].
Burke, Molly K. ;
Long, Anthony D. .
MOLECULAR ECOLOGY, 2012, 21 (20) :4913-4916
[8]   Genome-wide analysis of a long-term evolution experiment with Drosophila [J].
Burke, Molly K. ;
Dunham, Joseph P. ;
Shahrestani, Parvin ;
Thornton, Kevin R. ;
Rose, Michael R. ;
Long, Anthony D. .
NATURE, 2010, 467 (7315) :587-U111
[9]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[10]   Fast and flexible simulation of DNA sequence data [J].
Chen, Gary K. ;
Marjoram, Paul ;
Wall, Jeffrey D. .
GENOME RESEARCH, 2009, 19 (01) :136-142