The embedding structure and the shift operator of the U(1) lattice current algebra

被引:4
作者
Alekseev, AY
Recknagel, A
机构
[1] Inst. für Theoretische Physik, ETH-Hönggerberg
关键词
Kac-Moody algebra; embeddings; shift operator; quantum dilogarithms;
D O I
10.1007/BF00400135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The structure of block-spin embeddings of the U(1) lattice current algebra is described and the inner realizations of the shift automorphism are classified for an odd number of lattice sites. We present a particular inner shift operator which admits a factorization involving quantum dilogarithms analogous to the results of Faddeev and Volkov.
引用
收藏
页码:15 / 27
页数:13
相关论文
共 18 条
[1]   HIDDEN QUANTUM GROUPS INSIDE KAC-MOODY ALGEBRA [J].
ALEKSEEV, A ;
FADDEEV, L ;
SEMENOVTIANSHANSKY, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :335-345
[2]  
Blackadar B, 1986, MSRI PUBL, V5
[3]  
EFFROS EG, 1980, REG C SER MATJH, V46
[4]   ABELIAN CURRENT-ALGEBRA AND THE VIRASORO ALGEBRA ON THE LATTICE [J].
FADDEEV, L ;
VOLKOV, AY .
PHYSICS LETTERS B, 1993, 315 (3-4) :311-318
[5]   QUANTUM DILOGARITHM [J].
FADDEEV, LD ;
KASHAEV, RM .
MODERN PHYSICS LETTERS A, 1994, 9 (05) :427-434
[6]  
FADDEEV LD, 1994, ENR FERM SCH QUANT G
[7]  
FALCETO F, 1993, JOURNAL OF GEOMETRY AND PHYSICS, VOL 11, NOS 1-4, 1993, P251, DOI 10.1016/0393-0440(93)90056-K
[8]  
FRINGE A, COMMUNICATION
[9]  
GAWEDZKI K, 1993, DPG TAG MAINZ GERM
[10]  
GAWEDZKI K, 1993, QUANTUM GROUP SYMMET