Uncovering the roles of LaB 6-nanoparticle inoculant in the AlSi10Mg alloy fabricated via selective laser melting

被引:0
作者
Tan, Qiyang [1 ]
Yin, Yu [1 ]
Fan, Zhiqi [1 ]
Zhang, Jingqi [1 ]
Liu, Yingang [1 ]
Zhang, Ming-Xing [1 ]
机构
[1] Univ Queensland, Sch Mech & Min Engn, St Lucia, Qld 4072, Australia
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2021年 / 800卷
基金
澳大利亚研究理事会;
关键词
Selective laser melting; Aluminium alloys; Grain refinement; Microstructure; Mechanical property; MECHANICAL-PROPERTIES; GRAIN-REFINEMENT; HIGH-STRENGTH; ALUMINUM-ALLOY; PROCESS PARAMETERS; HEAT-TREATMENT; AL-12SI ALLOY; ZR CONTENT; MICROSTRUCTURE; TRANSITION;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effects of inoculation treatment with LaB6 nanoparticles (0-2 wt% additions) on the microstructural evolution and mechanical performance in a selective laser melted AlSi10Mg alloy were comprehensively investigated. The addition of 0.2-0.5 wt% LaB6 nanoparticles was identified to be optimal to achieve substantial grain refinement, microstructural homogeneity and thus remediation in the mechanical property anisotropy in the AlSi10Mg alloy. The substantial grain refinement was attributed to the coherent Al/LaB6 interfaces, which facilitated the heterogeneous nucleation of Al on the LaB6 nanoparticles during solidification. Increasing the LaB6 addition up to 2 wt% only marginally further refined the equiaxed grains, which can be understood in terms of the concept of nucleation free zone formed in the liquid at front of the growing solid-liquid interfaces. The LaB6 nanoparticles within the nucleation free zone could not be activated to be nucleants for alpha-Al. As a result, random orientation relationships between LaB6 nanoparticles within the nucleation free zone and the Al matrix were determined. Those excessive LaB6 nanoparticles weakened the melt pool boundaries, and therefore deteriorated the longitudinal ductility of the SLMed AlSi10Mg alloy.
引用
收藏
页数:12
相关论文
共 60 条
[1]   3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting [J].
Aboulkhair, Nesma T. ;
Simonelli, Marco ;
Parry, Luke ;
Ashcroft, Ian ;
Tuck, Christopher ;
Hague, Richard .
PROGRESS IN MATERIALS SCIENCE, 2019, 106
[2]   Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods [J].
AlMangour, Bandar ;
Grzesiak, Dariusz ;
Cheng, Jinquan ;
Ertas, Yavuz .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 257 :288-301
[3]   Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing [J].
Bermingham, M. J. ;
StJohn, D. H. ;
Krynen, J. ;
Tedman-Jones, S. ;
Dargusch, M. S. .
ACTA MATERIALIA, 2019, 168 :261-274
[4]   Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition [J].
Bi Jiang ;
Lei Zhenglong ;
Chen Xi ;
Li Peng ;
Lu Nannan ;
Chen Yanbin .
CERAMICS INTERNATIONAL, 2019, 45 (05) :5680-5692
[5]   Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting [J].
Cherry, J. A. ;
Davies, H. M. ;
Mehmood, S. ;
Lavery, N. P. ;
Brown, S. G. R. ;
Sienz, J. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 76 (5-8) :869-879
[6]   Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J].
Croteau, Joseph R. ;
Griffiths, Seth ;
Rossell, Marta D. ;
Leinenbach, Christian ;
Kenel, Christoph ;
Jansen, Vincent ;
Seidman, David N. ;
Dunand, David C. ;
Vo, Nhon Q. .
ACTA MATERIALIA, 2018, 153 :35-44
[7]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[8]   Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by Selective Laser Melting [J].
Delahaye, J. ;
Tchuindjang, J. Tchoufang ;
Lecomte-Beckers, J. ;
Rigo, O. ;
Habraken, A. M. ;
Mertens, A. .
ACTA MATERIALIA, 2019, 175 :160-170
[9]   Preparation of in-situ NdB6 nanoparticles and their reinforcement effect on Al-Cu-Mn alloy [J].
Ding, Jinhua ;
Cui, Chunxiang ;
Sun, Yijiao ;
Ding, Jing ;
Zhao, Lichen ;
Cui, Sen .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 806 :393-400
[10]   Grain refinement of aluminum alloys: Part I. The nucleant and salute paradigms - A review of the literature [J].
Easton, M ;
StJohn, D .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (06) :1613-1623