The Very High Cycle Fatigue Behaviour of Ti-6Al-4V Alloy

被引:47
|
作者
Janecek, M. [1 ]
Novy, F. [2 ]
Harcuba, P. [1 ]
Strasky, J. [1 ]
Trsko, L. [3 ]
Mhaede, M. [4 ]
Wagner, L. [4 ]
机构
[1] Charles Univ Prague, Dept Phys Mat, CZ-12116 Prague, Czech Republic
[2] Univ Zilina, Dept Mat Engn, Zilina, Slovakia
[3] Univ Zilina, Res Ctr, Zilina, Slovakia
[4] Tech Univ Clausthal, Inst Mat Sci & Technol, D-38678 Clausthal Zellerfeld, Germany
关键词
TITANIUM-ALLOYS; STRENGTH;
D O I
10.12693/APhysPolA.128.497
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The high cycle and very high cycle fatigue properties of the titanium alloy Ti-6Al-4V with a duplex microstructure were investigated at room temperature. High cycle fatigue tests were performed in the range from 10(4) to 10(7) cycles by rotating bending at the frequency of 30 Hz. The very high cycle fatigue tests were carried out in the range from 10(7) to 10(10) cycles in tension-compression on an ultrasonic fatigue testing machine at the frequency of 20 kHz. The stress amplitude was found to decrease with increasing number of cycles in the whole range from 10(4) up to 10(9) cycles and only at the highest number of cycles (N-F = 10(9)) the alloy exhibits the fatigue limit of 460 MPa. The detail fractographic analysis was performed to characterize the fatigue failure mechanisms. Both subsurface and surface crack initiation were observed in very high cycle fatigue region. No inclusions, but only local chemical inhomogeneity in microstructure was observed at the locations of subsurface fatigue crack initiation in alpha-grains.
引用
收藏
页码:497 / 502
页数:6
相关论文
共 50 条
  • [21] Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime
    Guenther, J.
    Krewerth, D.
    Lippmann, T.
    Leuders, S.
    Troester, T.
    Weidner, A.
    Biermann, H.
    Niendorf, T.
    INTERNATIONAL JOURNAL OF FATIGUE, 2017, 94 : 236 - 245
  • [22] High Cycle Fatigue and Very High Cycle Fatigue Performance of Selective Laser Melting Ti-6Al-4V Titanium Alloy-A Review
    Tusher, Md Mehide Hasan
    Ince, Ayhan
    MATERIALS PERFORMANCE AND CHARACTERIZATION, 2023, 12 (02) : 214 - 293
  • [23] High cycle fatigue and fatigue crack propagation behaviors of β-annealed Ti-6Al-4V alloy
    Jeong D.
    Kwon Y.
    Goto M.
    Kim S.
    International Journal of Mechanical and Materials Engineering, 2017, 12 (1)
  • [24] EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY
    Liu Xiaolong
    Sun Chengqi
    Zhou Yantian
    Hong Youshi
    ACTA METALLURGICA SINICA, 2016, 52 (08) : 923 - 930
  • [25] Effects of Defect, Mean Stress and Lower Loading on High Cycle and Very High Cycle Fatigue Behavior of Ti-6Al-4V Alloy
    Guo, Yiyun
    Wu, Lei
    Shang, Yibo
    Sun, Chengqi
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2025, 38 (03) : 435 - 448
  • [26] CONTRIBUTION TO THE INFLUENCES OF THE MICROSTRUCUTURE ON THE FATIGUE BEHAVIOUR OF TI-6AL-4V ALLOY
    Tan, Wen
    Stoscka, Michael
    Riedler, Martin
    Eichlseder, Wilfried
    25TH DANUBIA-ADRIA SYMPOSIUM ON ADVANCES IN EXPERIMENTAL MECHANICS, 2008, : 257 - 258
  • [27] Influence of Foreign Object Damage on High Cycle Fatigue of Ti-6Al-4V Alloy
    Majila, Anuradha Nayak
    Ramachandra, S.
    Mannan, S. L.
    Fernando, D. Chandru
    Narendrababu, S. N.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2016, 69 (08) : 1475 - 1481
  • [28] Thresholds for high-cycle fatigue in a turbine engine Ti-6Al-4V alloy
    Ritchie, RO
    Boyce, BL
    Campbell, JP
    Roder, O
    Thompson, AW
    Milligan, WW
    INTERNATIONAL JOURNAL OF FATIGUE, 1999, 21 (07) : 653 - 662
  • [29] Fretting fatigue behaviour of Ti-6Al-4V in contact with Alloy 718
    Srivathsan, S.
    Raman, S. Ganesh Sundara
    TRIBOLOGY-MATERIALS SURFACES & INTERFACES, 2022, 16 (02) : 143 - 152
  • [30] Isothermal and thermomechanical fatigue behaviour of Ti-6Al-4V titanium alloy
    Prasad, Kartik
    Kumar, Vikas
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (19-20): : 6263 - 6270