Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells

被引:84
作者
Jiang, San Ping [1 ]
机构
[1] Curtin Univ, Dept Chem Engn, Fuels & Energy Technol Inst, Bentley, WA 6102, Australia
基金
澳大利亚研究理事会;
关键词
POLYMER ELECTROLYTE MEMBRANES; ACID-DOPED POLYBENZIMIDAZOLE; NAFION COMPOSITE MEMBRANES; POROUS SILICA GLASSES; SOL-GEL PROCESS; INTERMEDIATE-TEMPERATURE; PORE STRUCTURE; CERAMIC MEMBRANES; NANOCOMPOSITE MEMBRANES; ELEVATED-TEMPERATURE;
D O I
10.1039/c4ta00121d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There are significant technological and economical advantages for operating a proton exchange membrane fuel cell (PEMFC) at temperatures above 100-150 degrees C. One of the key components in the development of high temperature PEMFCs is the proton exchange membrane (PEM). The PEM not only needs to be highly stable in the harsh chemical and physical environment in fuel cells, but also needs to possess high proton conductivity at elevated temperatures and under low humidity conditions. In this paper, the research activity and progress in the development of high temperature PEMs will be briefly reviewed but the main emphasis will be on the development of unsupported and functionalized nano and mesoporous structured inorganic materials such as TiO2, Fe2O3, Al2O3 and SiO2 as high temperature PEMs for fuel cells. Among various inorganic proton conducting materials, heteropolyacid (e. g., H3PW12O40 or HPW) functionalized mesoporous silica, HPW-meso-silica, shows particularly promising potential as new PEMs for fuel cells. The challenge and prospects of the development of functionalized mesoporous silica based PEMs for fuel cells operated at high temperatures (300-450 degrees C) are discussed.
引用
收藏
页码:7637 / 7655
页数:19
相关论文
共 179 条
[1]   Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140° C [J].
Adjemian, KT ;
Lee, SJ ;
Srinivasan, S ;
Benziger, J ;
Bocarsly, AB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (03) :A256-A261
[2]   Overview of hybrid membranes for direct-methanol fuel-cell applications [J].
Ahmad, H. ;
Kamarudin, S. K. ;
Hasran, U. A. ;
Daud, W. R. W. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (05) :2160-2175
[3]   Composite membranes for medium-temperature PEM fuel cells [J].
Alberti, G ;
Casciola, M .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :129-154
[4]   Development of a novel portable-size PEMFC short stack with electrodeposited Pt hydrogen diffusion anodes [J].
Alcaide, Francisco ;
Alvarez, Garbine ;
Alberto Blazquez, Jose ;
Cabot, Pere L. ;
Miguel, Oscar .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (11) :5521-5527
[5]   Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells [J].
Amirinejad, Mehdi ;
Madaeni, Sayed Siavash ;
Rafiee, Ezzat ;
Amirinejad, Sedigheh .
JOURNAL OF MEMBRANE SCIENCE, 2011, 377 (1-2) :89-98
[6]   Studies on ion-exchange membranes .1. Effect of humidity on the conductivity of Nafion(R) [J].
Anantaraman, AV ;
Gardner, CL .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 414 (02) :115-120
[7]   PROTON CONDUCTION IN H2TI4O9,1.2H2O [J].
ANDERSEN, EK ;
ANDERSEN, JGK ;
SKOU, E .
SOLID STATE IONICS, 1988, 27 (03) :181-187
[8]   Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest [J].
Antonio Asensio, Juan ;
Sanchez, Eduardo M. ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3210-3239
[9]   Acid-functionalized mesostructured aluminosilica for hydrophilic proton conduction membranes [J].
Athens, George L. ;
Ein-Eli, Yair ;
Chmelka, Bradley F. .
ADVANCED MATERIALS, 2007, 19 (18) :2580-+
[10]   Nickel/mesoporous silica (SBA-15) modified electrode: An effective porous material for electrooxidation of methanol [J].
Azizi, Seyed Naser ;
Ghasemi, Shahram ;
Chiani, Elham .
ELECTROCHIMICA ACTA, 2013, 88 :463-472