ON RELATION BETWEEN ENERGY AND LAPLACIAN ENERGY

被引:0
作者
Liu, Jianping [1 ,2 ]
Liu, Bolian [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
UNICYCLIC GRAPHS; MINIMAL ENERGY;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G be a simple graph with n vertices and m edges, with ordinary spectrum lambda(i), i = 1, 2, ... , n., and with Laplacian spectrum mu(i), i = 1, 2, ... , n. The energy and the Laplacian energy of the graph G are defined as E(G) = Sigma(n)(i=1) vertical bar lambda(i)vertical bar and LE(G) = Sigma(n)(i=1) vertical bar mu(i) - 2m/n vertical bar, respectively. In [9] the authors provided numerous examples for the inequality E(G) <= LE(G) and conjectured that it holds for all graphs. In this paper we show that the conjecture does not hold.
引用
收藏
页码:403 / 406
页数:4
相关论文
共 15 条
[1]  
Cvetkovic D.M., 1988, RECENT RESULTS THEOR
[2]   Laplacian energy of a graph [J].
Gutman, I ;
Zhou, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) :29-37
[3]  
GUTMAN I, 1992, TOP CURR CHEM, V162, P29
[4]   Topology and stability of conjugated hidrocarbons.: The dependence of total π-electron energy on molecular topology [J].
Gutman, I .
JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2005, 70 (03) :441-456
[5]  
Gutman I, 2001, ALGEBRAIC COMBINATORICS AND APPLICATIONS, P196
[6]  
Gutman I., 1978, Ber. Math.-Statist. Sekt. Forschungsz. Graz, V103, P1, DOI [DOI 10.1088/1742-5468/2008/10/P10008, DOI 10.1016/J.LAA.2004.02.038]
[7]  
Gutman I, 2008, MATCH-COMMUN MATH CO, V59, P343
[8]  
Gutman I, 2007, MATCH-COMMUN MATH CO, V58, P75
[9]  
Gutman I, 2007, MATCH-COMMUN MATH CO, V57, P435
[10]  
Hua HB, 2007, MATCH-COMMUN MATH CO, V58, P57