Advanced Characterization Techniques for Sodium-Ion Battery Studies

被引:158
作者
Shadike, Zulipiya [1 ]
Zhao, Enyue [2 ]
Zhou, Yong-Ning [3 ]
Yu, Xiqian [2 ]
Yang, Yong [4 ,5 ]
Hu, Enyuan [1 ]
Bak, Seongmin [1 ]
Gu, Lin [2 ]
Yang, Xiao-Qing [1 ]
机构
[1] Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[4] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[5] Xiamen Univ, Dept Chem, Xiamen 361005, Peoples R China
关键词
characterization techniques; ex situ; in situ; sodium-ion batteries; STRUCTURAL PHASE-TRANSITION; LAYERED CATHODE MATERIALS; HIGH-PERFORMANCE CATHODE; IN-SITU FTIR; ELECTROCHEMICAL PROPERTIES; LOCAL-STRUCTURE; INTERCALATION MECHANISM; NANI0.5MN0.5O2; CATHODE; NEUTRON-DIFFRACTION; STORAGE MECHANISM;
D O I
10.1002/aenm.201702588
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium (Na)-ion batteries (NIBs) are considered promising alternative candidates to the well-commercialized lithium-ion batteries, especially for applications in large-scale energy storage systems. The electrochemical performance of NIBs such as the cyclability, rate capability, and voltage profiles are strongly dependent on the structural and morphological evolution, phase transformation, sodium-ion diffusion, and electrode/electrolyte interface reconstruction during charge-discharge cycling. Therefore, in-depth understanding of the structure and kinetics of electrode materials and the electrode/electrolyte interfaces is essential for optimizing current NIB systems and exploring new materials for NIBs. Recently, rapid progress and development in spectroscopic, microscopic, and scattering techniques have provided extensive insight into the nature of structural evolution, morphological changes of electrode materials, and electrode/electrolyte interface in NIBs. In this review, a comprehensive overview of both static (ex situ) and real-time (in situ or in operando) techniques for studying the NIBs is provided. Special focus is placed on how these techniques are applied to the fundamental investigation of NIB systems and what important results are obtained.
引用
收藏
页数:29
相关论文
共 135 条
[1]   Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy [J].
Allan, Phoebe K. ;
Griffin, John M. ;
Darwiche, Ali ;
Borkiewicz, Olaf J. ;
Wiaderek, Kamila M. ;
Chapman, Karena W. ;
Morris, Andrew J. ;
Chupas, Peter J. ;
Monconduit, Laure ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (07) :2352-2365
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Spectroelectrochemical studies of magnesium deposition by in situ FTIR spectroscopy [J].
Aurbach, D ;
Turgeman, R ;
Chusid, O ;
Gofer, Y .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (05) :252-261
[4]   Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide [J].
Bak, Seong-Min ;
Qiao, Ruimin ;
Yang, Wanli ;
Lee, Sungsik ;
Yu, Xiqian ;
Anasori, Babak ;
Lee, Hungsui ;
Gogotsi, Yury ;
Yang, Xiao-Qing .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[5]   Neutron scattering for analysis of processes in lithium-ion batteries [J].
Balagurov, A. M. ;
Bobrikov, I. A. ;
Samoylova, N. Yu ;
Drozhzhin, O. A. ;
Antipov, E. V. .
RUSSIAN CHEMICAL REVIEWS, 2014, 83 (12) :1120-1134
[6]   Insights into Electrochemical Sodium Metal Deposition as Probed with in Situ 23Na NMR [J].
Bayley, Paul M. ;
Trease, Nicole M. ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (06) :1955-1961
[7]   Neutron Diffraction and Electrochemical Studies of Na0.79CoO2 and Na0.79Co0.7Mn0.3O2 Cathodes for Sodium-Ion Batteries [J].
Beck, Faith R. ;
Cheng, Y. Q. ;
Bi, Zhonghe ;
Feygenson, Mikhail ;
Bridges, Craig A. ;
Moorhead-Rosenberg, Zachary ;
Manthiram, Arumugam ;
Goodenough, John B. ;
Paranthaman, M. Parans ;
Manivannan, Ayyakkannu .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A961-A967
[8]   Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 [J].
Ben Yahia, H. ;
Essehli, R. ;
Avdeev, M. ;
Park, J-B. ;
Sun, Y-K. ;
Al-Maadeed, M. A. ;
Belharouak, I. .
JOURNAL OF SOLID STATE CHEMISTRY, 2016, 238 :103-108
[9]   Comprehensive Investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction [J].
Bianchini, M. ;
Fauth, F. ;
Brisset, N. ;
Weill, F. ;
Suard, E. ;
Masquelier, C. ;
Croguennec, L. .
CHEMISTRY OF MATERIALS, 2015, 27 (08) :3009-3020
[10]   Raman spectroscopic study of the phase transitions sequence in Li3Fe2(PO4)3 and Na3Fe2(PO4)3 at high temperature [J].
Bih, H. ;
Bih, L. ;
Manoun, B. ;
Azdouz, M. ;
Benmokhtar, S. ;
Lazor, P. .
JOURNAL OF MOLECULAR STRUCTURE, 2009, 936 (1-3) :147-155