A Nonfunctional Halogenase Masquerades as an Aromatizing Dehydratase in Biosynthesis of Pyrrolic Polyketides by Type I Polyketide Synthases

被引:7
作者
Yi, Dongqi [1 ]
Niroula, Dhirendra [2 ]
Gutekunst, Will R. [1 ,3 ]
Loper, Joyce E. [4 ,5 ]
Yan, Qing [2 ,4 ]
Agarwal, Vinayak [1 ,6 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[2] Montana State Univ, Dept Plant Sci & Plant Pathol, Bozeman, MT 59717 USA
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[4] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
[5] USDA, Agr Res Serv, Corvallis, OR 97330 USA
[6] Georgia Inst Technol, Sch Biol Sci, Atlanta, GA 30332 USA
关键词
MECHANISM; INSIGHTS; GENES;
D O I
10.1021/acschembio.2c00288
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The bacterial modular type I polyketide synthases (PKSs) typically furnish nonaromatic lactone and lactam natural products. Here, by the complete in vitro enzymatic production of the polyketide antibiotic pyoluteorin, we describe the biosynthetic mechanism for the construction of an aromatic resorcylic ring by a type I PKS. We find that the pyoluteorin type I PKS does not produce an aromatic product, rather furnishing an alicyclic dihydrophloroglucinol that is later enzymatically dehydrated and aromatized. The aromatizing dehydratase is encoded in the pyoluteorin biosynthetic gene cluster (BGC), and its presence is conserved in other BGCs encoding production of pyrrolic polyketides. Sequence similarity and mutational analysis demonstrates that the overall structure and position of the active site for the aromatizing dehydratase is shared with flavin-dependent halogenases albeit with a loss in ability to perform redox catalysis. We demonstrate that the post-PKS dehydrative aromatization is critical for the antibiotic activity of pyoluteorin.
引用
收藏
页码:1351 / 1356
页数:6
相关论文
共 41 条
[1]   Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases [J].
Abe, Ikuro ;
Morita, Hiroyuki .
NATURAL PRODUCT REPORTS, 2010, 27 (06) :809-838
[2]   Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products [J].
Adrover-Castellano, Maria L. ;
Schmidt, Jennifer J. ;
Sherman, David H. .
CHEMCATCHEM, 2021, 13 (09) :2095-2116
[3]   Biosynthesis of the Natural Fluorophore Legioliulin from Legionella [J].
Ahrendt, Tilman ;
Miltenberger, Melissa ;
Haneburger, Ina ;
Kirchner, Ferdinand ;
Kronenwerth, Max ;
Brachmann, Alexander O. ;
Hilbi, Hubert ;
Bode, Helge B. .
CHEMBIOCHEM, 2013, 14 (12) :1415-1418
[4]   Structural and Biochemical Characterization of Zhul Aromatase/Cyclase from the R1128 Polyketide Pathway [J].
Ames, Brian D. ;
Lee, Ming-Yue ;
Moody, Colleen ;
Zhang, Wenjun ;
Tang, Yi ;
Tsai, Shiou-Chuan .
BIOCHEMISTRY, 2011, 50 (39) :8392-8406
[5]   Polyketide production by plant-associated pseudomonads [J].
Bender, CL ;
Rangaswamy, V ;
Loper, J .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1999, 37 :175-196
[6]   Flavoenzymes that catalyse reactions with no net redox change [J].
Bornemann, S .
NATURAL PRODUCT REPORTS, 2002, 19 (06) :761-772
[7]   The structure of docking domains in modular polyketide synthases [J].
Broadhurst, RW ;
Nietlispach, D ;
Wheatcroft, MP ;
Leadlay, PF ;
Weissman, KJ .
CHEMISTRY & BIOLOGY, 2003, 10 (08) :723-731
[8]   An Unusual Thioesterase Promotes Isochromanone Ring Formation in Ajudazol Biosynthesis [J].
Buntin, Kathrin ;
Weissman, Kira J. ;
Mueller, Rolf .
CHEMBIOCHEM, 2010, 11 (08) :1137-1146
[9]  
CALDARAFESTIN G, P NATL ACAD SCI USA
[10]   Navigating the Fungal Polyketide Chemical Space: From Genes to Molecules [J].
Chooi, Yit-Heng ;
Tang, Yi .
JOURNAL OF ORGANIC CHEMISTRY, 2012, 77 (22) :9933-9953