Further properties on the degree distance of graphs

被引:9
作者
Wang, Hongzhuan [1 ,2 ]
Kang, Liying [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Huaiyin Inst Technol, Fac Math & Phys, Huaian 223003, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Degree distance; Eccentric distance sum; Tensor product; EXTREMAL PROPERTIES; SCHULTZ INDEX; PI INDEXES; VERTEX; WIENER; PRODUCTS;
D O I
10.1007/s10878-014-9757-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study the degree distance of a connected graph , defined as , where is the sum of distances between the vertex and all other vertices in and denotes the degree of vertex in . Our main purpose is to investigate some properties of degree distance. We first investigate degree distance of tensor product , where is the complete multipartite graph with partite sets of sizes , and we present explicit formulas for degree distance of the product graph. In addition, we give some Nordhaus-Gaddum type bounds for degree distance. Finally, we compare the degree distance and eccentric distance sum for some graph families.
引用
收藏
页码:427 / 446
页数:20
相关论文
共 37 条
  • [1] Independent sets in tensor graph powers
    Alon, Noga
    Lubetzky, Eyal
    [J]. JOURNAL OF GRAPH THEORY, 2007, 54 (01) : 73 - 87
  • [2] A survey of Nordhaus-Gaddum type relations
    Aouchiche, Mustapha
    Hansen, Pierre
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (4-5) : 466 - 546
  • [3] ASSAF A, 1990, ARS COMBINATORIA, V29, P13
  • [4] Bondy J., 2008, GRADUATE TEXTS MATH
  • [5] Hypercubes as direct products
    Bresar, B
    Imrich, W
    Klavzar, S
    Zmazek, B
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (04) : 778 - 786
  • [6] The minimum degree distance of graphs of given order and size
    Bucicovschi, Orest
    Cioaba, Sebastian M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (18) : 3518 - 3521
  • [7] Chen SB, 2010, MATCH-COMMUN MATH CO, V64, P767
  • [8] On the degree distance of a graph
    Dankelmann, P.
    Gutman, I.
    Mukwembi, S.
    Swart, H. C.
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) : 2773 - 2777
  • [9] DEGREE DISTANCE OF A GRAPH - A DEGREE ANALOG OF THE WIENER INDEX
    DOBRYNIN, AA
    KOCHETOVA, AA
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (05): : 1082 - 1086
  • [10] Wiener index of trees: Theory and applications
    Dobrynin, AA
    Entringer, R
    Gutman, I
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) : 211 - 249