Stability phenomenon for generalizations of algebraic differential equations

被引:0
|
作者
Barsegian, G
Begehr, H
Laine, I
机构
[1] Dept Pure & Appl Math, Yerevan 375014, Armenia
[2] Free Univ Berlin, Inst Math 1, D-14195 Berlin, Germany
[3] Univ Joensuu, Dept Math, FI-80101 Joensuu, Finland
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2002年 / 21卷 / 02期
关键词
algebraic differential equations; growth of meromorphic functions; stability of growth;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Certain stability properties for meromorphic solutions w(z) = u(x, y) + i v(x, y) of partial differential equations of the form Sigma(t=0)(m) f(t) (w')(m-t) = 0 are considered. Here the coefficients f(t) are functions of x, y, of u, v and the partial derivatives of u, v. Assuming that certain growth conditions for the coefficients f(t) are valid in the preimage under w of five distinct complex values, we find growth estimates, in the whole complex plane, for the order rho(w) and the unintegrated Ahlfors-Shimizu characteristic A(r,w).
引用
收藏
页码:495 / 503
页数:9
相关论文
共 44 条