A K-Band 5G Phased Array RX Channel With 3.3-dB NF and 28.5-dB Gain in 130-nm SiGe

被引:25
作者
Kalyoncu, Ilker [1 ]
Burak, Abdurrahman [1 ]
Gurbuz, Yasar [1 ]
机构
[1] Sabanci Univ, Microelect Res Grp SUMER, TR-34956 Istanbul, Turkey
关键词
Noise measurement; Gain; 5G mobile communication; Phased arrays; Array signal processing; Phase shifters; Inductors; 5G; noise figure; phased array; receiver; SiGe; 28-GHZ; TRANSCEIVER;
D O I
10.1109/TCSII.2020.2981174
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents a low-noise K-band phased array receive channel implemented in a 130-nm SiGe BiCMOS process. The IC consists of a cascode LNA, a vector modulator phase shifter (PS), and a current-steering VGA. The LNA employs a shunt inductor at the intermediate node of the cascode for noise reduction purposes. The PS generates I/Q signals by lumped quadrature hybrids for low noise operation. Various process compensation capabilities are employed within the PS to reliably achieve high resolution. The measured results demonstrated a peak gain of 28.5 dB at 24 GHz with a 3-dB bandwidth of 22-27 GHz. The measured noise figure is 3.3 dB, which is better than state-of-the-art among Si-based phased-array channels. For 6-b phase control, the rms phase error is 4 degrees and 0.2 degrees without and with calibration, respectively; the rms gain error being 1 dB for both cases. For 4-b gain control with 0.4-dB/step, the rms amplitude/phase errors are 0.1-dB/0.5 degrees. Across different phase settings, the IC has an OP1dB of -2 to -3 dBm, with a power consumption of 48 mW. The total chip area is 1.33 mm(2), excluding the pads.
引用
收藏
页码:2938 / 2942
页数:5
相关论文
共 13 条
[1]   Sub- l -dB and Wideband SiGe BiCMOS Low-Noise Amplifiers for X-Band Applications [J].
Caliskan, Can ;
Kalyoncu, Ilker ;
Yazici, Melik ;
Gurbuz, Yasar .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (04) :1419-1430
[2]  
Dunworth JD, 2018, ISSCC DIG TECH PAP I, P70, DOI 10.1109/ISSCC.2018.8310188
[3]   26-42 GHz SOICMOS low noise amplifier [J].
Ellinger, F .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (03) :522-528
[4]   A 28-GHz Low-Power Phased-Array Receiver Front-End With 360° RTPS Phase Shift Range [J].
Garg, Robin ;
Natarajan, Arun S. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (11) :4703-4714
[5]   A 26-GHz Vector Modulator in 130-nm SiGe BiCMOS Achieving Monotonic 10-b Phase Resolution Without Calibration [J].
Kalyoncu, Ilker ;
Burak, Abdurrahman ;
Kaynak, Mehmet ;
Gurbuz, Yasar .
2019 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC), 2019, :75-78
[6]   A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a 2 x 2 Beamformer Flip-Chip Unit Cell [J].
Kibaroglu, Kerim ;
Sayginer, Mustafa ;
Rebeiz, Gabriel M. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (05) :1260-1274
[7]   A 28-GHz CMOS Direct Conversion Transceiver With Packaged 2 x 4 Antenna Array for 5G Cellular System [J].
Kim, Hong-Teuk ;
Park, Byoung-Sun ;
Song, Seong-Sik ;
Moon, Tak-Su ;
Kim, So-Hyeong ;
Kim, Jong-Moon ;
Chang, Ji-Young ;
Ho, Yo-Chul .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (05) :1245-1259
[8]  
Kodak U, 2016, IEEE RAD FREQ INTEGR, P348, DOI 10.1109/RFIC.2016.7508324
[9]  
Pang J, 2018, IEEE RAD FREQ INTEGR, P56, DOI 10.1109/RFIC.2018.8428985
[10]   A 28-GHz 32-Element TRX Phased-Array IC With Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications [J].
Sadhu, Bodhisatwa ;
Tousi, Yahya ;
Hallin, Joakim ;
Sahl, Stefan ;
Reynolds, Scott K. ;
Renstrom, Orjan ;
Sjogren, Kristoffer ;
Haapalahti, Olov ;
Mazor, Nadav ;
Bokinge, Bo ;
Weibull, Gustaf ;
Bengtsson, Hakan ;
Carlinger, Anders ;
Westesson, Eric ;
Thillberg, Jan-Erik ;
Rexberg, Leonard ;
Yeck, Mark ;
Gu, Xiaoxiong ;
Ferriss, Mark ;
Liu, Duixian ;
Friedman, Daniel ;
Valdes-Garcia, Alberto .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (12) :3373-3391