Predicting catalysis:: Understanding ammonia synthesis from first-principles calculations

被引:174
作者
Hellman, A.
Baerends, E. J.
Biczysko, M.
Bligaard, T.
Christensen, C. H.
Clary, D. C.
Dahl, S.
van Harrevelt, R.
Honkala, K.
Jonsson, H.
Kroes, G. J.
Luppi, M.
Manthe, U.
Norskov, J. K.
Olsen, R. A.
Rossmeisl, J.
Skulason, E.
Tautermann, C. S.
Varandas, A. J. C.
Vincent, J. K.
机构
[1] Haldor Topsoe Res Labs, DK-2800 Lyngby, Denmark
[2] Free Univ Amsterdam, Dept Theoret Chem, NL-1081 HV Amsterdam, Netherlands
[3] Univ Coimbra, Dept Quim, P-3004535 Coimbra, Portugal
[4] Univ Iceland, Fac Sci, VR2, IS-107 Reykjavik, Iceland
[5] Tech Univ Denmark, NanoDTU, Ctr Sustainable Green Chem, Dept Chem, DK-2800 Lyngby, Denmark
[6] Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3HQ, England
[7] Tech Univ Munich, D-85747 Garching, Germany
[8] Tech Univ Denmark, Ctr Atom Scale Mat Phys, Dept Phys, DK-2800 Lyngby, Denmark
[9] Leiden Univ, Leiden Inst Chem, Gorlaeus Labs, NL-2300 RA Leiden, Netherlands
[10] Univ Bielefeld, D-33501 Bielefeld, Germany
关键词
D O I
10.1021/jp056982h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N-2 dissociation, H-2 dissociation, and hydrogenation of the intermediate reactants. A complete kinetic model based on the most relevant elementary steps can be established for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations. Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully integrated tool in the search for the next generation of catalysts.
引用
收藏
页码:17719 / 17735
页数:17
相关论文
共 143 条
[1]   Experimental and theoretical investigation of the reaction NH(X3Σ-)+H(2S)→N(4S)+H2 (X1Σ+g) -: art. no. 114301 [J].
Adam, L ;
Hack, W ;
Zhu, H ;
Qu, ZW ;
Schinke, R .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (11)
[2]   ACTIVATION OF NITROGEN BY ALKALI-METAL PROMOTED TRANSITION-METAL .1. AMMONIA SYNTHESIS OVER RUTHENIUM PROMOTED BY ALKALI-METAL [J].
AIKA, K ;
OZAKI, A ;
HORI, H .
JOURNAL OF CATALYSIS, 1972, 27 (03) :424-&
[3]  
Aika K., 1995, AMMONIA CATALYSIS MA, Vfirst
[4]  
[Anonymous], MOLPRO PACKAGE AB IN
[5]   Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts [J].
Anstrom, M ;
Topsoe, NY ;
Dumesic, JA .
JOURNAL OF CATALYSIS, 2003, 213 (02) :115-125
[6]   An object-oriented scripting interface to a legacy electronic structure code [J].
Bahn, SR ;
Jacobsen, KW .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :56-66
[7]   TIME-DEPENDENT QUANTUM DYNAMICS OF MOLECULAR PHOTOFRAGMENTATION PROCESSES [J].
BALINTKURTI, GG ;
DIXON, RN ;
MARSTON, CC .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1990, 86 (10) :1741-1749
[8]   Double many-body expansion potential energy surface for ground state HSO2 [J].
Ballester, MY ;
Varandas, AJC .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2005, 7 (11) :2305-2317
[9]   The multiconfiguration time-dependent Hartree (MCTDH) method:: a highly efficient algorithm for propagating wavepackets [J].
Beck, MH ;
Jäckle, A ;
Worth, GA ;
Meyer, HD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 324 (01) :1-105
[10]   Accurate MRCI study of ground-state N2H2 potential energy surface [J].
Biczysko, M. ;
Poveda, L. A. ;
Varandas, A. J. C. .
CHEMICAL PHYSICS LETTERS, 2006, 424 (1-3) :46-53